Recursive prime p(k+1)=m*((n*p(k))^3+1)+1 base 12^9*5^5^5+7

By: | Comments: 4 Comments

Posted in categories: Fun Stuffs, Prime Search

Define p(0)=12^9*5^5^5+7;
p(1)[m=466;n=78]=466*((78*(12^9*5^3125+7))^3+1)+1;
p(2)[m=6470;n=884]=6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1;
p(3)[m=278822;n=33410]=278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1;
p(4)[m=145950;n=46953]=145950*((46953*( 278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1))^3+1)+1;

p(4) has database ID 96540 in The List of Largest Known Primes Home Page. The direct link is HERE.

The kernel 12^9*5^5^5+1 is proven by Primo. The certificate is in the first reply of this post.

The recursive primes are proven using OpenPFGW, by the command
pfgw -t (or tp) -h”p(k)” p_h(k+1); pfgw -t (or tp) -h”p_h(k+1)” p(k+1)
The number
p_h(k+1)=(n*p(k)-1)*(n*p(k))+1=(n*p(k))^2-n*p(k)+1
p(k+1)=m*((n*p(k))^3+1)+1=m*(n*p(k)+1)((n*p(k))^2-n*p(k)+1)+1=m*(n*p(k)+1)*p_h(k+1)+1
are reformatted by Mathematica to get the short expression.

The final certification code is
#!/bin/sh
./pfgw -l”pmtup_5.4.2.cert” -t -h”p_00″ ph_01
./pfgw -l”pmtup_5.4.2.cert” -t -h”ph_01″ p_01
./pfgw -l”pmtup_5.4.2.cert” -t -h”p_01″ ph_02
./pfgw -l”pmtup_5.4.2.cert” -t -h”ph_02″ p_02
./pfgw -l”pmtup_5.4.2.cert” -t -h”p_02″ ph_03
./pfgw -l”pmtup_5.4.2.cert” -t -h”ph_03″ p_03
./pfgw -l”pmtup_5.4.2.cert” -t -h”p_03″ ph_04
./pfgw -l”pmtup_5.4.2.cert” -t -h”ph_04″ p_04

The certificate will be posted when done.

4 Comments

  • bet365 says:

    hi!This was a really wonderful blog!
    I come from milan, I was fortunate to search your theme in yahoo
    Also I learn a lot in your blog really thank your very much i will come again

  • leizhou says:

    ::::::::::::::
    ph_01
    ::::::::::::::
    (78*(12^9*5^3125+7)-1)*(78*(12^9*5^3125+7))+1
    ::::::::::::::
    ph_02
    ::::::::::::::
    (884*(466*((78*(12^9*5^3125+7))^3+1)+1)-1)*(884*(466*((78*(12^9*5^3125+7))^3+1)+1))+1
    ::::::::::::::
    ph_03
    ::::::::::::::
    (33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1)-1)*(33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))+1
    ::::::::::::::
    ph_04
    ::::::::::::::
    (46953*(278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1)-1)*(46953*(278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1))+1
    ::::::::::::::
    p_00
    ::::::::::::::
    12^9*5^3125+7
    ::::::::::::::
    p_01
    ::::::::::::::
    466*((78*(12^9*5^3125+7))^3+1)+1
    ::::::::::::::
    p_02
    ::::::::::::::
    6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1
    ::::::::::::::
    p_03
    ::::::::::::::
    278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1
    ::::::::::::::
    p_04
    ::::::::::::::
    145950 *( ( 46953 *( 278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1))^3+1)+1

  • leizhou says:

    Certificate:

    Primality testing (78*(12^9*5^3125+7)-1)*(78*(12^9*5^3125+7))+1 [N-1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 2
    Calling Brillhart-Lehmer-Selfridge with factored part 49.96%
    (78*(12^9*5^3125+7)-1)*(78*(12^9*5^3125+7))+1 is prime! (1.6044s+0.0005s)
    Primality testing 466*((78*(12^9*5^3125+7))^3+1)+1 [N-1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 2
    Calling Brillhart-Lehmer-Selfridge with factored part 66.64%
    466*((78*(12^9*5^3125+7))^3+1)+1 is prime! (3.7508s+0.0005s)
    Primality testing (884*(466*((78*(12^9*5^3125+7))^3+1)+1)-1)*(884*(466*((78*(12^9*5^3125+7))^3+1)+1))+1 [N-1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 2
    Calling Brillhart-Lehmer-Selfridge with factored part 49.98%
    (884*(466*((78*(12^9*5^3125+7))^3+1)+1)-1)*(884*(466*((78*(12^9*5^3125+7))^3+1)+1))+1 is prime! (15.4107s+0.0012s)
    Primality testing 6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1 [N-1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 17
    Calling Brillhart-Lehmer-Selfridge with factored part 66.65%
    6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1 is prime! (37.4255s+0.0016s)
    Primality testing (33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1)-1)*(33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))+1 [N-1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 3
    Calling Brillhart-Lehmer-Selfridge with factored part 49.99%
    (33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1)-1)*(33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))+1 is prime! (175.2733s+0.0046s)
    Primality testing 278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1 [N-1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 5
    Calling Brillhart-Lehmer-Selfridge with factored part 66.66%
    278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1 is prime! (414.1709s+0.0079s)
    Primality testing (46953*(278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1)-1)*(46953*(278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1))+1 [N-1, Brillh
    art-Lehmer-Selfridge]
    Running N-1 test using base 2
    Calling Brillhart-Lehmer-Selfridge with factored part 50.00%
    (46953*(278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1)-1)*(46953*(278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1))+1 is prime! (1687.6584s+0.0248s)
    Primality testing 145950 *( ( 46953 *( 278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1))^3+1)+1 [N-1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 11
    Calling Brillhart-Lehmer-Selfridge with factored part 66.66%
    145950 *( ( 46953 *( 278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1))^3+1)+1 is prime! (4422.2311s+0.0269s)

  • leizhou says:

    The Primo certificate for 12^9*5^5^5+7 is at HERE

Leave a Reply