Category: Prime Search


3^1681130 + 3^445781 + 1 is prime.

By: | Comments: No Comments

Posted in categories: Fun Stuffs, Prime Search

Proof file: HERE Record page here. 3^1681130+3^445781+1 has 802,104 digits factor of p-1: 3^1681130+3^445781 = 3^445781*(3^1235349+1) for 3^1235349+1: Divisor of 1235349: {1, 3, 9, 317, 433, 951, 1299, 2853, 3897, 137261, 411783, 1235349} for which Cyclotomic[2x,3] divides 3^1235349+1, 3^1235349+1=Product of Phi[2m,3], m is in the above divisor list. Phi: Cyclotomic function in Mathematica. Phi[2,3] = […]

An exactly one million digits prime number

By: | Comments: No Comments

Posted in categories: Fun Stuffs, Prime Search

464253*2^3321908-1 makes top 5000 list with entrance rank 63, see http://primes.utm.edu/primes/page.php?id=111603

OEIS A181980: Least positive integer m > 1 such that 1 – m^k + m^(2k) – m^(3k) + m^(4k) is prime, where k = A003592(n)

By: | Comments: 41 Comments

Posted in categories: Fun Stuffs, Prime Search

The sequence: 2, 4, 2, 6, 2, 20, 20, 26, 25, 10, 14, 5, 373, 4, 65, 232, 56, 2, 521, 911, 1156, 1619, 647, 511, 34, 2336, 2123, 1274, 2866, 951, 2199, 1353, 4965, 7396, 13513, 3692, 14103, 32275, 2257, 86, 3928, 2779, 18781, 85835, 820, 16647, 2468, 26677, 1172, 38361, 40842, 1-m^k+m^(2*k)-m^(3^k)+m^(4*k) equals […]

Found Generalized Repunit Prime

By: | Comments: 1 Comment

Posted in categories: Fun Stuffs, Prime Search

(151492^7351-1)/151491 cert is at http://bitc.bme.emory.edu/~lzhou//prime_certs/GR_151492_7351.tgz

General rule of PRP

By: | Comments: No Comments

Posted in categories: Fun Stuffs, Prime Search

For any positive integer k, if it can be factored to the form k=p1^m1*p2^m2*…*pn^mn suppose q is a prime number such that q is not a factor of k, then Mod[q^(p*(p1-1)*(p2-1)*…*(pn-1)/(p1*p2*…*pn)), k]=1 Special: If k is a prime, and q is a different prime number, Mod[q^(k-1), k] = 1

OEIS-A139602 first 1000 found

By: | Comments: 4 Comments

Posted in categories: Fun Stuffs, Prime Search

“00001:Prime[5]:11+/-6*1=5+17” “00002:Prime[8]:19+/-6*2=7+31” “00003:Prime[18]:61+/-6*3=43+79” “00004:Prime[14]:43+/-6*4=19+67” “00005:Prime[25]:97+/-6*5=67+127” “00006:Prime[38]:163+/-6*6=127+199” “00007:Prime[43]:191+/-6*7=149+233” “00008:Prime[50]:229+/-6*8=181+277” “00009:Prime[61]:283+/-6*9=229+337” “00010:Prime[48]:223+/-6*10=163+283” “00011:Prime[132]:743+/-6*11=677+809” “00012:Prime[167]:991+/-6*12=919+1063” “00013:Prime[100]:541+/-6*13=463+619” “00014:Prime[88]:457+/-6*14=373+541” “00015:Prime[151]:877+/-6*15=787+967” “00016:Prime[217]:1327+/-6*16=1231+1423” “00017:Prime[176]:1049+/-6*17=947+1151” “00018:Prime[216]:1321+/-6*18=1213+1429” “00019:Prime[270]:1733+/-6*19=1619+1847” “00020:Prime[214]:1307+/-6*20=1187+1427” “00021:Prime[300]:1987+/-6*21=1861+2113” “00022:Prime[785]:6011+/-6*22=5879+6143” “00023:Prime[429]:2971+/-6*23=2833+3109” “00024:Prime[687]:5153+/-6*24=5009+5297” “00025:Prime[308]:2029+/-6*25=1879+2179” “00026:Prime[1083]:8693+/-6*26=8537+8849” “00027:Prime[374]:2551+/-6*27=2389+2713” “00028:Prime[644]:4789+/-6*28=4621+4957” “00029:Prime[713]:5407+/-6*29=5233+5581” “00030:Prime[320]:2129+/-6*30=1949+2309” “00031:Prime[840]:6473+/-6*31=6287+6659” “00032:Prime[608]:4481+/-6*32=4289+4673” “00033:Prime[654]:4889+/-6*33=4691+5087” “00034:Prime[577]:4217+/-6*34=4013+4421” “00035:Prime[1005]:7951+/-6*35=7741+8161” “00036:Prime[1409]:11743+/-6*36=11527+11959” “00037:Prime[1631]:13789+/-6*37=13567+14011” “00038:Prime[1215]:9851+/-6*38=9623+10079” “00039:Prime[928]:7253+/-6*39=7019+7487” “00040:Prime[1386]:11491+/-6*40=11251+11731” “00041:Prime[2304]:20393+/-6*41=20147+20639” “00042:Prime[1984]:17231+/-6*42=16979+17483” “00043:Prime[1203]:9749+/-6*43=9491+10007” “00044:Prime[2336]:20747+/-6*44=20483+21011” “00045:Prime[853]:6599+/-6*45=6329+6869” “00046:Prime[1638]:13873+/-6*46=13597+14149” “00047:Prime[1899]:16369+/-6*47=16087+16651” “00048:Prime[1806]:15461+/-6*48=15173+15749” “00049:Prime[1974]:17123+/-6*49=16829+17417” “00050:Prime[1594]:13451+/-6*50=13151+13751” “00051:Prime[1228]:9967+/-6*51=9661+10273” “00052:Prime[2958]:26959+/-6*52=26647+27271” “00053:Prime[2371]:21089+/-6*53=20771+21407” “00054:Prime[4376]:41863+/-6*54=41539+42187” “00055:Prime[2999]:27437+/-6*55=27107+27767” […]

New prime found: 2^74015*3^42*35^8*5863^16*137^73952*953^2*1223^4*15217 – ((((3643*121875747021497257)^2*19568-1)^2*7624+1)^2*273906-1)

By: | Comments: 3 Comments

Posted in categories: Fun Stuffs, Prime Search

Using Primo, 274^2311 – 83 is proven a prime number. Define this as p[1]=a[1]-b[1], while a[1]=274^2311 and b[1]=83. p[2]=16236*(a[1]^2-b[1]^2)-1 =16236*274^4622 – 111849805 is proven prime using pfgw: pfgw -h”p[1]” -tp “p[2]” Keep going in this way, it is obtained: p[3]=2^9249*3^5*5*7*11^2*13^2*41^2*137^9244 – (3643*121875747021497257) p[4]=2^18502*3^10*5^2*7^2*11^4*13^4*41^4*137^18488*1223 – ((3643*121875747021497257)^2*19568-1) p[5]=2^37007*3^20*35^4*5863^8*137^36976*953*1223^2 – (((3643*121875747021497257)^2*19568-1)^2*7624+1) p[6]=2^74015*3^42*35^8*5863^16*137^73952*953^2*1223^4*15217 – ((((3643*121875747021497257)^2*19568-1)^2*7624+1)^2*273906-1) Certificate will be posted […]

Recursive prime brother by Brillhart – Lehmer – Selfridge algorithm

By: | Comments: 1 Comment

Posted in categories: Fun Stuffs, Prime Search

Define: p[k,i]=ABS[1+2*n[k,i]*p[k-1,1]*p[k-1,2]],n[k,1] is the integer with minimum ABS[n[k,1]] that makes p[k,1] a prime number, and n[k,2] is the integer with second minimum ABS[n[k,2]] that makes p[k,2] a prime number The primality of p[k,i] can be proven using Brillhart – Lehmer – Selfridge algorithm recursively by using p[k-1,1] and p[k-1,2] as helper since n is a […]

Recursive Generalized Fermat Prime found

By: | Comments: 2 Comments

Posted in categories: Fun Stuffs, Prime Search

Define p(0)=1; finding the smallest General Fermat prime in the form p(n+1)[m]=(2*m*p(n))^2+1, m is positive integer: p(1)[1]=(2*p(0))^2+1=5; p(2)[1]=(2*p(1))^2+1=101; p(3)[5]=(2*5*p(2))^2+1=1020101; p(4)[48]=(2*48*p(3))^2+1=((1020101)*96)^2+1; p(5)[1]=(2*p(4))^2+1=((((1020101)*96)^2+1)*2)^2+1; p(6)[30]=(2*30*p(5))^2+1=((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1; p(7)[85]=(2*85*p(6))^2+1=((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1; p(8)[935]=(2*935*p(7))^2+1=((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1; p(9)[528]=(2*528*p(8))^2+1=((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1; p(10)[2505]=(2*2505*p(9))^2+1=((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1; p(11)[840]=(2*840*p(10))^2+1=((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1; p(12)[1190]=(2*1190*p(11))^2+1=((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1; p(13)[29382]=(2*29382*p(12))^2+1=((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1; p(14)[25176]=(2*25176*p(13))^2+1=((((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1; p(15)[12685]=(2*12685*p(14))^2+1=((((((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1)*25370)^2+1; p(16)[67852]=(2*67852*p(15))^2+1=((((((((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1)*25370)^2+1)*135704)^2+1; p(17)[299549]=(2*299549*p(16))^2+1=((((((((((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1)*25370)^2+1)*135704)^2+1)*599098)^2+1; p(18)[62406]=(2*62406*p(17))^2+1=((((((((((((((((((((((((((((97929696^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1)*25370)^2+1)*135704)^2+1)*599098)^2+1)*124812)^2+1; p(4) has database ID 96548 in The List of Largest Known Primes Home Page. The direct link is HERE. These primes […]

Recursive prime p(k+1)=m*((n*p(k))^3+1)+1 base 12^9*5^5^5+7

By: | Comments: 4 Comments

Posted in categories: Fun Stuffs, Prime Search

Define p(0)=12^9*5^5^5+7; p(1)[m=466;n=78]=466*((78*(12^9*5^3125+7))^3+1)+1; p(2)[m=6470;n=884]=6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1; p(3)[m=278822;n=33410]=278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1; p(4)[m=145950;n=46953]=145950*((46953*( 278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1))^3+1)+1; p(4) has database ID 96540 in The List of Largest Known Primes Home Page. The direct link is HERE. The kernel 12^9*5^5^5+1 is proven by Primo. The certificate is in the first reply of this post. The recursive primes are proven using OpenPFGW, by the command pfgw -t […]