Generalized Cullen and Woodall primes can be twins

By: | Comments: 36 Comments

Posted in categories: Prime Search

Tags:

Generalized Cullen Primes are defined as the primes of the form n.bn+1 with n+2 > b, while generalized Woodall Primes as the form n.bn-1 with n+2 > b. If we loose the restraint of n+2 > b to a plain n > 2, with every b>1, except for n = k^c and mod(n, c)=0,there is a conjuncture

There is always an integer of b>1 that makes n.bn-1and n.bn+1a pair of twin primes.

Found terms as following:

2		3		1
3		4		2
--		--		--
5		570		14
6		1820		20
7		1464		23
8		54		14
9		60		16
10		14025		42
11		1932		37
12		3029		42
13		7194		51
14		15		17
15		3612		54
--		--		--
17		4746		63
18		3154		64
19		540		53
20		150		44
21		7060		82
22		138		48
23		80094		114
24		6160		92
25		33480		114
26		93135		130
--		--		--
28		366618		157
29		26058		129
30		13516		125
31		90510		155
32		16836		136
33		9824		133
34		418875		192
35		57246		168
--		--		--
37		182394		196
38		64077		184
39		14178		163
40		943410		241
41		36078		189
42		78389		208
43		314520		239
44		15870		187
45		194942		240
46		15044700	332
47		241944		255
48		3871		174
49		308730		271
50		11604		205
51		89492		255
52		4745196		349
53		388626		298
54		3905		196
55		60648		265
56		26625		250
57		44240		267
58		198240		310
59		178290		312
60		937143		361
61		403488		344
62		19605		268
63		19716		273
--		--		--
65		10098		263
66		2029430		419
67		420174		379
68		423		181
69		1177568		421
70		772764		415
71		580338		412
72		1285530		442
73		2978310		475
74		885120		442
75		68280		365
76		158655		398
77		1726236		483
78		84826329	621
79		1413132		488
80		27852		358
81		25092		359
82		1611528		511
83		413856		469
84		45		141
85		247272		461
86		1232580		526
87		26550		387
88		52847043	682
89		527892		512
90		1416870		556
91		448380		517
92		79209		453
93		204470		496
94		448020		534
95		228144		512
96		666875		562
97		215154		520
98		71727		478
99		3162208		646
--		--		--
101		274560		552
102		7119669		701
103		232464		555
104		2007420		658
105		186298		556
106		484443570	923
107		2822406		693
108		16130583	781
109		591780		632
110		68748		535
111		162498		581
112		6032505		762
113		171546		594
114		56215		544
115		323520		636
116		6801570		795
117		555676		675
118		1679421		737
119		701982		698
120		58266208	934
121		228858		651
122		409011		687
123		158620		642
124		1553460		770
125		1145286		760
126		27835860	941
127		1552446		789
128		546417		737
129		170172		677
130		74235735	1026
131		1259052		802
132		1329566		811
133		127584		682
134		999180		807
135		242580		730
136		>1E9		--
137		10893030	967
138		81732139	1095
139		220122		745
140		148491		721
141		8406692		979
142		744168		836
143		1352616		879
--		--		--
145		7313424		998
146		797505		864
147		66890		712
148		21504723	1088
149		1754178		933
150		17103770	1088
151		11806812	1071
152		--		--
153		--		--
154		--		--
155		--		--
156		--		--
157		--		--
158		422547		933
159		158632		892
160		573291		924
161		284418		881
162		--		--
163		539016		937
164		--		--
165		169256		865
166		--		--
167		1054716		1009
168		581204		971
169		--		--
170		1474092		1051
171		712508		1004
172		--		--
173		603744		1003
174		--		--
175		--		--
176		--		--
177		--		--
178		--		--
179		440418		1013
180		--		--
181		1012620		1090
182		497169		1040
183		388934		1026
184		--		--
185		1580046		1150
186		99465		932
187		--		--
188		--		--
189		--		--
190		--		--
191		--		--
192		--		--
193		--		--
194		1701405		1212
195		--		--
196		--		--
197		--		--
198		--		--
199		--		--
200		49839		942
201		--		--
202		--		--
203		859146		1207
204		--		--
205		239604		1106

The dashes in the first column means that that item does not exist theoretically. The other dashes means not-yet-found terms. Currently processed to 200.

36 Comments

Leave a Reply