OEIS A181980: Least positive integer m > 1 such that 1 – m^k + m^(2k) – m^(3k) + m^(4k) is prime, where k = A003592(n)

By: | Comments: 41 Comments

Posted in categories: Fun Stuffs, Prime Search

The sequence:

2, 4, 2, 6, 2, 20, 20, 26, 25, 10,

14, 5, 373, 4, 65, 232, 56, 2, 521, 911,

1156, 1619, 647, 511, 34, 2336, 2123, 1274, 2866, 951,

2199, 1353, 4965, 7396, 13513, 3692, 14103, 32275, 2257, 86,

3928, 2779, 18781, 85835, 820, 16647, 2468, 26677, 1172, 38361,

40842,

1-m^k+m^(2*k)-m^(3^k)+m^(4*k) equals Phi(10*k,m), or Phi(10, m^k).

Proofing status:
a(1)=Phi[10,2^1]: 2 digits, p^2-1 factored prime.
a(2)=Phi[10,4^2]: 5 digits, p^2-1 factored prime.
a(3)=Phi[10,2^4]: 5 digits, Equals to a(2)
a(4)=Phi[10,6^5]: 16 digits, p^2-1 factored prime.
a(5)=Phi[10,2^8]: 10 digits, p^2-1 factored prime.
a(6)=Phi[10,20^10]: 53 digits, OpenPFGW 129.07% proof without helper factorization.
a(7)=Phi[10,20^16]: 84 digits, OpenPFGW 131.88% proof without helper factorization.
a(8)=Phi[10,26^20]: 114 digits, OpenPFGW 143.88% proof without helper factorization.
a(9)=Phi[10,25^25]: 140 digits, OpenPFGW 131.03% proof without helper factorization.
a(10)=Phi[10,10^32]: 128 digits, OpenPFGW 124.71% proof without helper factorization.
a(11)=Phi[10,14^40]: 184 digits, OpenPFGW 142.53% proof without helper factorization.
a(12)=Phi[10,5^50]: 140 digits, Equals to a(9).
a(13)=Phi[10,373^64]: 494 digits, OpenPFGW 162.51% proof with factored part 53.73%.
a(14)=Phi[10,4^80]: 193 digits, OpenPFGW 301.25% proof with factored part 100.00%.
a(15)=Phi[10,65^100]: 544 digits, OpenPFGW 182.06% proof with factored part 60.38%.
a(16)=Phi[10,232^125]: 888 digits, OpenPFGW with factored part 41.45% and helper 0.56% (124.92% proof).
a(17)=Phi[10,56^128]: 896 digits, OpenPFGW with factored part 38.45% and helper 0.50% (115.94% proof).
a(18)=Phi[10,2^160]: 193 digits, Equals to a(14).
a(19)=Phi[10,521^200]: 2,174 digits, OpenPFGW with factored part 44.38% and helper 0.54% (133.68% proof).
a(20)=Phi[10,911^250]: 2,960 digits, OpenPFGW with factored part 33.79% and helper 0.01% (101.38% proof).
a(21)=Phi[10,1156^256]: 3,137 digits, CHG proof with factored part 28.90%.
a(22)=Phi[10,1619^320]: 4,108 digits, OpenPFGW with factored part 33.29% and helper 0.14% (100.04% proof).
a(23)=Phi[10,647^400]: 4,498 digits, OpenPFGW with factored part 38.43% and helper 0.15% (115.44% proof).
a(24)=Phi[10,511^500]: 5,417 digits, OpenPFGW with factored part 33.70% and helper 0.07% (101.17% proof).
a(25)=Phi[10,34^512]: 3,137 digits, Equals to a(21)
a(26)=Phi[10,2336^625]: 8,422 digits, kp proof with factored part 30.78%.
a(27)=Phi[10,2123^640]: 8,517 digits, OpenPFGW with factored part 40.68% and helper 0.06% (122.09% proof).
a(28)=Phi[10,1274^800]: 9,937 digits, kp proof with factored part 31.61%.
a(29)=Phi[10,2866^1000]: 13,830 digits, CHG proof with factored part 27.77%.
a(30)=Phi[10,951^1024]: 12,199 digits, CHG proof with factored part 26.95%.
a(31)=Phi[10,2199^1250]: 16,712 digit, CHG proof with factored part 27.09%.
a(32)=Phi[10,1353^1280]: 16,033 digits, CHG proof with factored part 28.05%.
a(33)=Phi[10,4965^1600]: 23,654 digits, CHG proof with factored part 29.10%.
a(34)=Phi[10,7396^2000]: 30,952 digits, CHG proof with factored part 28.58%.
*a(35)=Phi[10,13513^2048]: 33,840 digits, PRP with factored part 26.13%.
a(36)=Phi[10,3692^2500]: 35,673 digits, CHG proof with factored part 27.69%.
a(37)=Phi[10,14103^2560]: 42,489 digits, CHG proof factored part 26.40% (chgcertd Type error).
*a(38)=Phi[10,32275^3123]: 56,361 digits, PRP with factored part 25.84%.
a(39)=Phi[10,2257^3200]: 42,926 digits, CHG proof with factored part 27.90%.
a(40)=Phi[10,86^4000]: 30,952 digits, kp proof with factored part 30.02%.
a(41)=Phi[10,3928^4096]: 58,887 digits, CHG proof factored part 27.04%.
a(42)=Phi[10,2779^5000]: 68,878 digits, CHG proof with factored part 26.69%.
*a(43)=Phi[10,18781^5120]: 87,526 digits, PRP with factored part 26.34%.
*a(44)=Phi[10,85835^6250]: 123,342 digits, PRP with factored part 25.84%.
a(45)=Phi[10,820^6400]: 74,594 digits, CHG proof with factored part 27.12%.
*a(46)=Phi[10,16647^8000]: 135,083 digits, PRP with factored part 26.07%.
*a(47)=Phi[10,2468^8192]: 111,161 digits, PRP with factored part 25.28%.
a(48)=Phi[10,26677^10000]: 177,046 digits, CHG proof with factored part 27.16%.
*a(49)=Phi[10,1172^10240]: 125,704 digits, PRP with factored part 25.45%.
*a(50)=Phi[10,38361^12500]: 229,195 digits, PRP with factored part 25.32%.
a(51)=Phi[10,40842^12800]: 236,089 digits, CHG proof with factored part 28.14%.

Note: Phi[10,4^2]=Phi[10,2^4] since 4=2^2
Note: Phi[10,25^25]=Phi[10,5^50] since 25=5^2
Note: Phi[10,4^80]=Phi[10,2^160] since 4=2^2
Note: Phi[10,1156^256]=Phi[10,34^512] since 1156=34^2
Note: Phi[10,7396^2000]=Phi[10,86^4000] since 7396=86^2

a(1)=Phi[10, 2^1]=11

a(2)=Phi[10,4^2]=61681

a(3)=Phi[10,2^4]=61681

a(4)=Phi[10,6^5]=3655688315536801

OpenPFGW proof:

$./pfgw  -tc -q”1-6^5+6^(2*5)-6^(3*5)+6^(4*5)”

Primality testing 1-6^5+6^(2*5)-6^(3*5)+6^(4*5) [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 7
Running N-1 test using base 13
Running N-1 test using base 17
Running N+1 test using discriminant 23, base 2+sqrt(23)
Running N+1 test using discriminant 23, base 3+sqrt(23)
Calling N+1 BLS with factored part 100.00% and helper 100.00% (403.92% proof)
1-6^5+6^(2*5)-6^(3*5)+6^(4*5) is prime! (0.0193s+0.0004s)

a(5)=Phi[10,2^8]=4278255361

a(6)=Phi[10,20^10]=10995116277758926258176000104857599999989760000000001

OpenPFGW proof:

$ ./pfgw -tc -q”1-20^10+20^(2*10)-20^(3*10)+20^(4*10)”
PFGW Version 3.3.4.20100405.x86_Stable [GWNUM 25.14]

Primality testing 1-20^10+20^(2*10)-20^(3*10)+20^(4*10) [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 17
Running N-1 test using base 23
Running N-1 test using base 37
Running N+1 test using discriminant 43, base 3+sqrt(43)
Calling N-1 BLS with factored part 40.12% and helper 8.72% (129.07% proof)
1-20^10+20^(2*10)-20^(3*10)+20^(4*10) is prime! (0.0086s+0.0006s)

a(7)=Phi[10,20^16]=18446744073709551615971852502328934400000\
0429496729599999999999344640000000000000001

OpenPFGW proof:

$ ./pfgw -tc -q”1-20^16+20^(2*16)-20^(3*16)+20^(4*16)”
PFGW Version 3.3.4.20100405.x86_Stable [GWNUM 25.14]

Primality testing 1-20^16+20^(2*16)-20^(3*16)+20^(4*16) [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 29
Running N+1 test using discriminant 37, base 15+sqrt(37)
Calling N-1 BLS with factored part 42.03% and helper 5.07% (131.88% proof)
1-20^16+20^(2*16)-20^(3*16)+20^(4*16) is prime! (0.0102s+0.0006s)

a(8)=Phi[10,26^20]=157713125193403080417654809073419921485591\
4988749414250433529072806660344375821341361193668309978857119\
00082176001

OpenPFGW proof:

$ ./pfgw -tc GGF_n5_20
PFGW Version 3.3.4.20100405.x86_Stable [GWNUM 25.14]

Primality testing 1-26^20+26^(2*20)-26^(3*20)+26^(4*20) [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 17
Running N-1 test using base 23
Running N+1 test using discriminant 43, base 3+sqrt(43)
Calling N-1 BLS with factored part 47.34% and helper 1.33% (143.88% proof)
1-26^20+26^(2*20)-26^(3*20)+26^(4*20) is prime! (0.0178s+0.0004s)

a(9)=Phi[10,25^25]=6223015277861141707144064053780124170525328\
95248031358691463745029389305888319156836996164700086470525363\
32466843305155634880065917968750001

OpenPFGW proof:

$ ./pfgw -tc GGF_n5_25
PFGW Version 3.3.4.20100405.x86_Stable [GWNUM 25.14]

Primality testing 1-25^25+25^(2*25)-25^(3*25)+25^(4*25) [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 13
Running N+1 test using discriminant 19, base 6+sqrt(19)
Calling N-1 BLS with factored part 43.53% and helper 0.22% (131.03% proof)
1-25^25+25^(2*25)-25^(3*25)+25^(4*25) is prime! (0.0191s+0.0004s)

a(10)=Phi[10,10^32]=9999999999999999999999999999999900000000000\
000000000000000000000999999999999999999999999999999990000000000\
0000000000000000000001

OpenPFGW proof:

$ ./pfgw -tc GGF_n5_32
PFGW Version 3.3.4.20100405.x86_Stable [GWNUM 25.14]

Primality testing 1-10^32+10^(2*32)-10^(3*32)+10^(4*32) [N-1/N+1, Brillhart-Lehmer-Selfridge]
Running N-1 test using base 29
Running N-1 test using base 31
Running N-1 test using base 41
Running N+1 test using discriminant 53, base 13+sqrt(53)
Calling N-1 BLS with factored part 40.94% and helper 1.88% (124.71% proof)
1-10^32+10^(2*32)-10^(3*32)+10^(4*32) is prime! (0.0205s+0.0004s)

41 Comments

  • leizhou says:

    a(51)=Phi[10,40842^12800]=1-40842^12800+40842^(2*12800)-40842^(3*12800)+40842^(4*12800)

    236,089 digits

    Found Prime Factors of p-1:
    2
    3
    5
    11
    17
    31
    37
    41
    47
    61
    71
    79
    101
    109
    151
    193
    257
    353
    401
    601
    641
    769
    1201
    1321
    1601
    2269
    3361
    4481
    4801
    6481
    12289
    14081
    14401
    25601
    33601
    40841
    40961
    54401
    74561
    82721
    114689
    133121
    206501
    218657
    307201
    765041
    1652801
    1857701
    2966017
    8232001
    10320641
    17377301
    22958081
    23243489
    38031361
    101171201
    141260401
    511796801
    580208641
    592472281
    767813201
    4696459711
    7041703969
    9717337601
    10501723201
    30515641601
    248766146561
    354276008321
    517894582651
    705146584001
    27918237849409
    160801300019551
    251196515293121
    740504382126701
    1128341342943233
    1264146271265531
    1924021172026601
    10305432550837001
    106840174981862401
    282638771475032321
    299497698368208401
    7874946188317929601
    133466665536812834753
    32579176238039271196801
    103265713013107051982851
    1644387444162459121795073
    46281551799869591412662641
    319850984076845481511828001
    14699143858589845426640521217
    78540254584496316212839437217
    1231634760396384628753151465580001
    25383772588726059050728090710020861
    183459513338611775699980114423258801
    8129138624812868079591688688707879493026042201
    9275682700520645403799349823969863930448789546895316498950301
    11066883583648857438527369426571814622297079595137168593270663\
    19376481
    30216334046792383030527184376489973772011567890018885884802183\
    24728363758132963627347421437299209974795673601
    30896784238673486628299380131568108740517922099602228223937912\
    1654281362124763213189531902075674942016908420192175326593
    23851072408931790360188409526856266289770692324409614279309066\
    00452874800748867479431258764171876036353371143813835794080513\
    04523248222661872160422948553076600478109632569542854540840281\
    01871806398997299827538988902231528807845227971251407222277435\
    232843063645443429377889441
    16480153972425028814652469686408236011634578739365641597063187\
    37731079127643300040264245664850954427681387172479374422310847\
    81685121572472620611564378433984982118389957132207049685766073\
    49603868943574181572523135989787435577230127856660414326593267\
    88455123968449069668625422859575663901329301797820552273432415\
    03804021818477170067381547596461842334296004284369092597561465\
    70809114831796266872900264330655918914984699132380404783136881\
    70373995044614922811578736747639294733439039004819202125065732\
    61345272089987259225603363226848675681000647878131813309627851\
    41364106440758072760868244679349198872853058925706321703793881\
    49550200968475007800667576439785778527388964249545717524323455\
    58362082507995417409577001139153249725059759485682602890753540\
    97533644047284268966090655542051382789188583397277621968364899\
    54102809943859773018778332594796485699966330598153583924964970\
    44818595850171331925392382029871328044806068790672437221233956\
    17355276430273648202173773280157312549893126057860674517258437\
    03117419358866964727796384484090696149155161631362474217958722\
    37882685894806587187775696923599858376523507069249743264222061\
    91607970511151588013379476560937088032354757854995950903341566\
    93739939367806185170471583646529196526818375135986407740957190\
    09228664749953790623885918250696091619914721167204213311642242\
    18668669305532418281906168988872304597055500400791351454099706\
    97951257395699521484133136968724540108843554440294238313929772\
    33616049319893978206265220867499862506536683832214261411274267\
    34486415904607724720693877232783027058898579828650433852496554\
    261222648182611186304277023950356998047432338870211390841118008\
    44331678704978430003333134443706087404064882298451266128888895\
    85456410385880982625258186313796883913013423980899492536116880\
    92419315614538563511812238711232337081143942876417091789093613\
    57883969235290895833685924976621249375523108503237670194723512\
    56285241148360541164220189404969617802128097547984385828142083\
    31301469529577275427046262270324650645981574336321288408793832\
    03302579456420592773741200285446142652306006670677946472101846\
    382731491389689697144520222534762438727016761119314478363872287\
    32667589999841454172402905072756232275360710029263424374748050\
    77599962082061644258698933189011811858822150367449116415765429\
    31715427782365972831049380049162177851062155644761873671146391\
    98493528840036847567668596454560693928236339921394224847080489\
    24506553347005524008801330108270572887191147007607381493066174\
    04696013352739461047216781355847296380386750498719702236727928\
    37272999812187375601997568428182817024616193467591156837171088\
    57018317636743156947111349281824208794646037657643857576808959\
    45907252934578164723220051685648873847269325170806226786977256\
    15342547203237811086240660769025679495782016160518535665992481\
    20320498035818365706402337022971228398679211759541355421908563\
    43982984088825455189853056900405180571583367137308852559010734\
    41736955283633574628089809563861743836251859255088977146000559\
    62792637705944871865525012513443235578039233733501483114067892\
    56267387909797238119289661841268823771825650800821409757366836\
    71750484905276475862430236161551563242991808834036567710927234\
    74601316938278617201986523173282067362707233841621734917618484\
    58813564415759476742885910279104361329578512298152871132105650\
    20157188838972392620233763990800791585012217456845879802214083\
    65494855482095991004642139209009666179184208104003787386259271\
    27986365676638498570623754180497371739457984605258187029576810\
    54844776121281880562978773799274862304101643709263001559084803\
    17648412713217448653178087099063398121965582405194843889580814\
    96773568787143021013095614502500133473023182457715403181531079\
    79492886761596524887615854840929460368426290092545118129567877\
    64770161685355259927216998982736815827001357510009660699137834\
    75147532046718228956513356411684122759795084990100199520907948\
    21624500893139805807165194602330798232640158559769048135701825\
    72882578397470723885923670870900737779222613112668790075054137\
    67220252273257105789403241987413235413027523659260737070913904\
    73951519218088491237203525792477650798936570475853811000025824\
    75930183763275890140156265969059671114970898622233156025081124\
    59301925851262288220493413901299241751078725933015767150576155\
    58373891554052488264621633806838684057556938866084271404988839\
    61848058950690322309760239966215355119928611580945248044148758\
    99260963510031111378568076923949142464297985525801717978299674\
    7424382657394465455917412424108271439471508895799291694770151\
    3594103234620654889153124068812315605197685911724097709028624\
    4233898388493539136351274137125080844715413837454208536730002\
    2987074173564582019169675718876273533528147689708801464220476\
    11549854580246923324691660134614827481611840325544085738643530\
    44954331009718167440128727002809718118519663354412508208595130\
    25568597901375516622956721829575514906243498726143669858517875\
    83456276413871480743544710400723743498032145363672115758693108\
    02932829981653424874080285576482620669237694230338338508697683\
    28451291127249791800676543723561678898206983539889654100743938\
    01155173408857921813789232187631067196655780163499824553274623\
    44069665426368330310048146782613224090106649535023617422685411\
    30368825756224308071876844312547528166646390100654341285048315\
    85686837376934594513779649871242390114365616568356644110881961\
    50659765192415271198275304229418832544556698247807213958641283\
    00359495571360399099534182367985471227743010663573738750559281\
    20826428459825379582351498320945093548636579165739265384460790\
    83114372580217164510960807607827020377028261974231191615874174\
    33945147221045134315037034759340982492509369923933454061939842\
    01913298038871840701691458780564203887409256997633387041310324\
    75979784325670533320537155193048198968775995147874176924935939\
    64509180808476499992540287580729831707656218299214030508269098\
    79699581722747669174457100744337319234914909450593190053105701\
    61880316487752282246705641762780670012825010559449684347027546\
    77233549405171877603023664414778672469119107690702355179120470\
    782729466675201

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-40842^12800+40842^(2*12800)-40842^(3*12800)+40842^(4*12800) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 23
    Running N+1 test using discriminant 43, base 18+sqrt(43)
    Calling N-1 BLS with factored part 28.14% and helper 0.01% (84.43% proof)
    1-40842^12800+40842^(2*12800)-40842^(3*12800)+40842^(4*12800) is Fermat and Lucas PRP! (21046.6553s+0.0461s)

    CHG proof screen output:
    Welcome to the CHG primality prover!
    ————————————

    Input file is: GGF_n5_12800.in
    Certificate file is: GGF_n5_12800.out
    Found values of n, F and G.
    Number to be tested has 236089 digits.
    Modulus has 66447 digits.
    Modulus is 28.14456642% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 8, u = 3. Right endpoint has 36751 digits.
    Done! Time elapsed: 115841234ms.
    Running CHG with h = 8, u = 3. Right endpoint has 34173 digits.
    Done! Time elapsed: 101440703ms.
    Running CHG with h = 7, u = 2. Right endpoint has 29469 digits.
    Done! Time elapsed: 18687125ms.
    Running CHG with h = 7, u = 2. Right endpoint has 23544 digits.
    Done! Time elapsed: 24636469ms.
    Running CHG with h = 5, u = 1. Right endpoint has 18604 digits.
    Done! Time elapsed: 6587875ms.
    Running CHG with h = 5, u = 1. Right endpoint has 4270 digits.
    Done! Time elapsed: 27882797ms.
    A certificate has been saved to the file: GGF_n5_12800.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “GGF_n5_12800.in”.

    Pol[1, 1] with [h, u]=[5, 1] has ratio=1.190649948 E-36750 at X, ratio=1.9246747
    01 E-23942 at Y, witness=2.
    Pol[2, 1] with [h, u]=[4, 1] has ratio=1.880528215 E-19061 at X, ratio=5.4498439
    02 E-14335 at Y, witness=13.
    Pol[3, 1] with [h, u]=[6, 2] has ratio=0.2520200341 at X, ratio=1.717364487 E-98
    80 at Y, witness=3.
    Pol[4, 1] with [h, u]=[6, 2] has ratio=4.186665477 E-7396 at X, ratio=1.87890509
    6 E-11850 at Y, witness=2.
    Pol[5, 1] with [h, u]=[8, 3] has ratio=1.000000000 at X, ratio=1.169013535 E-141
    11 at Y, witness=7.
    Pol[6, 1] with [h, u]=[8, 3] has ratio=1.169013535 E-14111 at X, ratio=2.7813639
    85 E-7736 at Y, witness=7.

    Validated in 105 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG certificate here.

  • leizhou says:

    a(50)=Phi[10,38361^12500]=1-38361^12500+38361^(2*12500)-38361^(3*12500)+38361^(4*12500)

    229,195 digits

    Proven PRP by OpenPFGW using known prime factors of p^2-1 as helper:

    to do…

  • leizhou says:

    a(49)=Phi[10,1172^10240]=1-1172^10240+1172^(2*10240)-1172^(3*10240)+1172^(4*10240)

    125,704 digits

    Proven PRP by OpenPFGW using known prime factors of p^2-1 as helper:
    Primality testing 1-1172^10240+1172^(2*10240)-1172^(3*10240)+1172^(4*10240) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N-1 test using base 37
    Running N+1 test using discriminant 43, base 9+sqrt(43)
    Calling N-1 BLS with factored part 25.46% and helper 0.00% (76.37% proof)
    1-1172^10240+1172^(2*10240)-1172^(3*10240)+1172^(4*10240) is Fermat and Lucas PRP! (8108.2495s+0.0238s)

    Primality not yet proven.

  • leizhou says:

    a(48)=Phi[10,26677^10000]=1-26677^10000+26677^(2*10000)-26677^(3*10000)+26677^(4*10000)

    177,046 digits

    Found Prime Factors of p-1:
    2
    3
    5
    7
    11
    13
    17
    19
    37
    41
    61
    101
    103
    151
    193
    251
    401
    641
    751
    1321
    1601
    3169
    4001
    4801
    8017
    13339
    14051
    16001
    24251
    27457
    28001
    28751
    47041
    57751
    143401
    150001
    172321
    398473
    420001
    980801
    2100001
    2252251
    13829251
    28756801
    42675001
    61942501
    67412801
    80311529
    113045321
    177738751
    407273731
    450638501
    638684161
    1081055809
    3080250001
    3863572751
    8746617281
    15292850201
    28153765121
    388422421001
    471321167857
    1198815576401
    11055909197471
    13118218360001
    58605485928001
    197994600538751
    3830171583953681
    5009874437561401
    6248873850342881
    7408918927437761
    16233201565938901
    243920250158790001
    1309453815177708401
    3160252067112463241
    21781776134426538101
    33941973176226200689
    106703775942265559401
    8558687804810167483751
    29475847760042518849361
    159020644450537919537951
    57897429995388304968007167632801
    86997948125940293022701126598401
    9164334308739459558946100961100912151
    3556784984769544259956788611192581828901
    39091202832922131643360246870555131749226097001
    26490306106400113794573804937626712260976630827563347998619037551
    130443007588504865575767813891392166376431391200034485995456259051308947187625880001
    823573688872421061764217274922290882389248174577256380507147923059180686452405431554601
    72920971673469895781936728666792650354527392092004198349020057882445348541778967261678853107541249540501484010862806661181874497
    18242404871736536430467328709948116304434287154916901224176376336705789334167464425433386118667371004254730741798251730031264557857190267555787746297518776353010447556844102042342476143972688718595611468194906235441013188119983853957130790866497224768893725003654314766921889952869767319665506565564365818109994167563869840371312408790287101453234862290918921851235013528253624267611494491314022038096412354841511170019237469031748089751
    95426259021137352847081958896976809662774053943528198266780367750924838072735655534666686178277404214027202620742129188166736200184051070249231593693894506787111728330057184296105319876519229830478453769895985772239617314823193218871317547635260365362956607210469810883761613662048287888673147172941482259441639320551714436593103611708850452417980584300609794453000153367817634944490427843242085699539010821682413898431635340140458088161827149258892492556464308709809424710786873392804122387257214476884929905471438483584635290526004355129267972616936551417495873308518822685919351383366683638137530437460482154282064253262156009101057085739593381227398871984923412507877040736493530741375511328767808889057052945409254907874546724218577515786111185324407730377884260587192462120039391676184903970450643765487071317522470269788823764356599942797232756797975379542848961549722335612973296108996076377075492929341710529864864330346770614103220754639743115149979558278729457629144606348775228936549332783663149776329339524771475621214755087672621431002102424347130012125999577351839555081854520104493083260458700507089864992707311897946267455986668815664581142516482854124686610257542084749738207539519154741534168143681429991331550853560062293543093311151794080127825987069549848601848351751522272289243985816245437108417430579824055909102617216816934038784535045467158576994124156123715903859212575203288115167737786407677899780597262270168514218563889142200480962248533871775092287286150364147487485151457389765469019973468819981932392999461869430662382327400110760855354273813732505706616740281516644813321560710919234720503647409195396295266991479141637712049162292627512343575555635557795943868611064125554108865743711216287292310643334328516978229323407893786233216934236697618085969487123766131435420182290033467940697705595735169234364071777819393251073729203972449130637940441010812272531443719732102759823679353809621713662764818960856391202058816823259210601171428304829643708999474717270108869451224894425181432741681186089183254803291633912637065688770209221480352293200552896467833644626443778283895806717059087134932657683446300816886216904524275341383062603208327150556405584306225078751

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-26677^10000+26677^(2*10000)-26677^(3*10000)+26677^(4*10000) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 23
    Running N+1 test using discriminant 43, base 16+sqrt(43)
    Calling N-1 BLS with factored part 27.03% and helper 0.00% (81.10% proof)
    1-26677^10000+26677^(2*10000)-26677^(3*10000)+26677^(4*10000) is Fermat and Lucas PRP! (8238.0153s+0.0274s)

    CHG proof screen output:
    (13:09) gp > \r CHG.GP
    realprecision = 68509 significant digits (68500 digits displayed)

    Welcome to the CHG primality prover!
    ————————————

    Input file is: GGF_n5_10000.in
    Certificate file is: GGF_n5_10000.out
    Found values of n, F and G.
    Number to be tested has 177046 digits.
    Modulus has 48083 digits.
    Modulus is 27.15807366% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 12, u = 5. Right endpoint has 32800 digits.
    Done! Time elapsed: 887778203ms.
    Running CHG with h = 12, u = 5. Right endpoint has 31898 digits.
    Done! Time elapsed: 277822531ms.
    Running CHG with h = 12, u = 5. Right endpoint has 30893 digits.
    Done! Time elapsed: 390246875ms.
    Running CHG with h = 11, u = 4. Right endpoint has 29474 digits.
    Done! Time elapsed: 35751047ms.
    Running CHG with h = 11, u = 4. Right endpoint has 28143 digits.
    Done! Time elapsed: 88164281ms.
    Running CHG with h = 11, u = 4. Right endpoint has 26006 digits.
    Done! Time elapsed: 144496141ms.
    Running CHG with h = 9, u = 3. Right endpoint has 24242 digits.
    Done! Time elapsed: 26380234ms.
    Running CHG with h = 9, u = 3. Right endpoint has 22280 digits.
    Done! Time elapsed: 30178016ms.
    Running CHG with h = 7, u = 2. Right endpoint has 19469 digits.
    Done! Time elapsed: 9736250ms.
    Running CHG with h = 7, u = 2. Right endpoint has 16956 digits.
    Done! Time elapsed: 9378187ms.
    Running CHG with h = 5, u = 1. Right endpoint has 10635 digits.
    Done! Time elapsed: 1836360ms.
    A certificate has been saved to the file: GGF_n5_10000.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “GGF_n5_10000.in”.

    Pol[1, 1] with [h, u]=[4, 1] has ratio=1.279211285 E-7434 at X, ratio=6.37452171
    8 E-18069 at Y, witness=2.
    Pol[2, 1] with [h, u]=[7, 2] has ratio=2.687721337 E-36137 at X, ratio=1.1097587
    21 E-12643 at Y, witness=2.
    Pol[3, 1] with [h, u]=[6, 2] has ratio=0.750076477 at X, ratio=3.258971343 E-502
    6 at Y, witness=2.
    Pol[4, 1] with [h, u]=[9, 3] has ratio=3.102349260 E-2812 at X, ratio=3.99328959
    4 E-8433 at Y, witness=2.
    Pol[5, 1] with [h, u]=[7, 3] has ratio=3.425175749 E-5886 at X, ratio=4.03698168
    7 E-5886 at Y, witness=3.
    Pol[6, 1] with [h, u]=[11, 4] has ratio=5.77601828 E-1766 at X, ratio=8.09929460
    E-7060 at Y, witness=3.
    Pol[7, 1] with [h, u]=[9, 4] has ratio=6.27781974 E-4571 at X, ratio=6.36568827
    E-8546 at Y, witness=2.
    Pol[8, 1] with [h, u]=[10, 4] has ratio=1.647597169 E-394 at X, ratio=3.48202939
    1 E-5327 at Y, witness=2.
    Pol[9, 1] with [h, u]=[11, 5] has ratio=3.893160262 E-4008 at X, ratio=1.2791869
    34 E-7093 at Y, witness=641.
    Pol[10, 1] with [h, u]=[12, 5] has ratio=0.2872425837 at X, ratio=1.163599687 E-
    5025 at Y, witness=2.
    Pol[11, 1] with [h, u]=[12, 5] has ratio=7.558106306 E-4470 at X, ratio=1.222299
    509 E-4510 at Y, witness=2.

    Validated in 361 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG certificate here.

  • leizhou says:

    a(47)=Phi[10,2468^8192]=1-2468^8192+2468^(2*8192)-2468^(3*8192)+2468^(4*8192)

    111,161 digits

    Proven PRP by OpenPFGW with know factor of p^2-1 as helper:
    Primality testing 1-2468^8192+2468^(2*8192)-2468^(3*8192)+2468^(4*8192) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N-1 test using base 23
    Running N+1 test using discriminant 41, base 8+sqrt(41)
    Calling N-1 BLS with factored part 25.28% and helper 0.00% (75.85% proof)
    1-2468^8192+2468^(2*8192)-2468^(3*8192)+2468^(4*8192) is Fermat and Lucas PRP! (5616.6347s+0.0419s)

    Primality not yet proven.

  • leizhou says:

    a(46)=Phi[10,16647^8000]=1-16647^8000+16647^(2*8000)-16647^(3*8000)+16647^(4*8000)

    135,083 digits

    Proven PRP by OpenPFGW with helpers:
    Primality testing 1-16647^8000+16647^(2*8000)-16647^(3*8000)+16647^(4*8000) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 47
    Running N+1 test using discriminant 71, base 17+sqrt(71)
    Calling N-1 BLS with factored part 26.07% and helper 0.00% (78.22% proof)
    1-16647^8000+16647^(2*8000)-16647^(3*8000)+16647^(4*8000) is Fermat and Lucas PRP! (6580.6021s+0.0264s)

    Primality not yet proven.

  • leizhou says:

    a(45)=Phi[10, 820^6400]=1-820^6400+820^(2*6400)-820^(3*6400)+820^(4*6400)

    74,594 digits

    Found Prime Factors of p-1:
    2
    3
    5
    7
    11
    13
    17
    37
    41
    61
    101
    151
    257
    337
    401
    601
    641
    821
    1069
    1601
    3361
    15361
    15809
    16001
    23321
    25601
    26881
    29501
    82721
    100801
    102913
    180161
    392321
    414721
    499801
    626929
    721169
    1948801
    3808001
    9484289
    22125953
    61180201
    134684261
    184983521
    224001601
    333390361
    377737361
    386863361
    3602726657
    8817024001
    14618690561
    26291173121
    722392582081
    1284677826401
    7493068673537
    22536863364481
    32917514723329
    184412908168961
    247071198294241
    421571099651521
    1780100757469501
    3248602105204801
    30779144840480401
    22715627361398955233
    24498014449561717121
    606569987731446884273
    20358544447009903031201
    262570740857366277991937
    763133411624100184476001
    7109416245345074070417409
    1839487760361537497420932897
    3079769700199052908576503041
    22467428295816925407695464001
    1173062199615229775008689787201
    24755777994211248866267135034724001
    2903093378215761168724423180124996353
    6167043619637130020518576835511460561
    433351328245229936694897984261284070001
    581794941628026913131544425397821183041
    560790740733517033068941948246354481927521
    1053678581461615208342914505238982232458202689
    41785118500134605640208000121658089045478240001
    120409166824916039667391457468300471474026082881
    125112326610140081456922627444686499147406570963577197351
    167805822709984795496479702213039765335422550606766727115344991335393285915257151196992960501
    11838439428921560591693782075513626343906542183197717944200623973279039007340021566023618430541921
    703305654288906436958219379497467053005976572248120053216059964483063461725714964703578611672186155248028561616187521
    978580293892699148341589725148778359159362004313215238197209350283027890266893995808145380107785260350506149448882636419913257972671954046919994917726778468731569547550713829740183709601

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-820^6400+820^(2*6400)-820^(3*6400)+820^(4*6400) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 23
    Running N-1 test using base 29
    Running N+1 test using discriminant 43, base 16+sqrt(43)
    Calling N-1 BLS with factored part 27.09% and helper 0.00% (81.26% proof)
    1-820^6400+820^(2*6400)-820^(3*6400)+820^(4*6400) is Fermat and Lucas PRP! (2754.9721s+0.0121s)

    CHG proof screen output:
    (22:23) gp > \r CHG.GP
    realprecision = 35006 significant digits (35000 digits displayed)

    Welcome to the CHG primality prover!
    ————————————

    Input file is: GGF_n5_6400.in
    Certificate file is: GGF_n5_6400.out
    Found values of n, F and G.
    Number to be tested has 74594 digits.
    Modulus has 20148 digits.
    Modulus is 27.01006789% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 13, u = 5. Right endpoint has 14151 digits.
    Done! Time elapsed: 64073125ms.
    Running CHG with h = 13, u = 5. Right endpoint has 13921 digits.
    Done! Time elapsed: 39040078ms.
    Running CHG with h = 13, u = 5. Right endpoint has 13554 digits.
    Done! Time elapsed: 21896766ms.
    Running CHG with h = 12, u = 5. Right endpoint has 13157 digits.
    Done! Time elapsed: 41997266ms.
    Running CHG with h = 12, u = 5. Right endpoint has 12604 digits.
    Done! Time elapsed: 18521953ms.
    Running CHG with h = 11, u = 4. Right endpoint has 12207 digits.
    Done! Time elapsed: 8035125ms.
    Running CHG with h = 11, u = 4. Right endpoint has 11564 digits.
    Done! Time elapsed: 14261047ms.
    Running CHG with h = 11, u = 4. Right endpoint has 10727 digits.
    Done! Time elapsed: 19014546ms.
    Running CHG with h = 9, u = 3. Right endpoint has 9835 digits.
    Done! Time elapsed: 4601875ms.
    Running CHG with h = 9, u = 3. Right endpoint has 8736 digits.
    Done! Time elapsed: 14953250ms.
    Running CHG with h = 7, u = 2. Right endpoint has 7146 digits.
    Done! Time elapsed: 2208766ms.
    Running CHG with h = 5, u = 1. Right endpoint has 4332 digits.
    Done! Time elapsed: 270375ms.
    A certificate has been saved to the file: GGF_n5_6400.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “GGF_n5_6400.in”.

    Pol[1, 1] with [h, u]=[4, 1] has ratio=2.555099086457431501 E-2954 at X, ratio=8.184178629924674230 E-7286 at Y, witness=19.
    Pol[2, 1] with [h, u]=[7, 2] has ratio=4.430362152376191681 E-14571 at X, ratio=4.980846811764702776 E-5628 at Y, witness=19.
    Pol[3, 1] with [h, u]=[9, 3] has ratio=1.9968289704275057198 E-7285 at X, ratio=1.6221110537527721809 E-4771 at Y, witness=2.
    Pol[4, 1] with [h, u]=[7, 3] has ratio=1.7686188003150724504 E-1821 at X, ratio=9.779052622597695405 E-3297 at Y, witness=3.
    Pol[5, 1] with [h, u]=[11, 4] has ratio=2.552962520451149853 E-3572 at X, ratio=4.027671464435174202 E-3572 at Y, witness=19.
    new witness: 23
    Pol[6, 1] with [h, u]=[9, 4] has ratio=7.116054474805947673 E-837 at X, ratio=2.5642304680180752406 E-3345 at Y, witness=23.
    new witness: 23
    Pol[7, 1] with [h, u]=[9, 4] has ratio=2.5642304680180752406 E-3345 at X, ratio=1.9341137019436646588 E-2575 at Y, witness=23.
    Pol[8, 1] with [h, u]=[11, 5] has ratio=6.228407959812901578 E-399 at X, ratio=1.0499743801245253174 E-1984 at Y, witness=2.
    new witness: 29
    Pol[9, 1] with [h, u]=[11, 5] has ratio=3.209438404884783388 E-1921 at X, ratio=3.2990809692383145096 E-2767 at Y, witness=29.
    Pol[10, 1] with [h, u]=[12, 5] has ratio=0.4105098426946462310 at X, ratio=1.2883844305385905222 E-1984 at Y, witness=29.
    Pol[11, 1] with [h, u]=[12, 5] has ratio=4.582050656828750418 E-1789 at X, ratio=1.7715191973547210819 E-1837 at Y, witness=2.
    Pol[12, 1] with [h, u]=[12, 5] has ratio=6.119090286936575517 E-1149 at X, ratio=1.1571768894282322366 E-1148 at Y, witness=5.

    Validated in 94 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG certificate here.

  • leizhou says:

    a(44)=Phi[10,85835^6250]=1-85835^6250+85835^(2*6250)-85835^(3*6250)+85835^(4*6250)

    123,342 digits

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-85835^6250+85835^(2*6250)-85835^(3*6250)+85835^(4*6250) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 29
    Running N-1 test using base 37
    Running N-1 test using base 79
    Running N+1 test using discriminant 103, base 4+sqrt(103)
    Calling N-1 BLS with factored part 25.82% and helper 0.01% (77.47% proof)
    1-85835^6250+85835^(2*6250)-85835^(3*6250)+85835^(4*6250) is Fermat and Lucas PRP! (9298.9293s+0.0287s)

    Primality not yet proven.

  • leizhou says:

    a(43)=Phi[10,18781^5120]=1-18781^5120+18781^(2*5120)-18781^(3*5120)+18781^(4*5120)

    87,526 digits

    Found Prime Factors of p-1:
    2
    3
    5
    7
    11
    17
    41
    109
    193
    241
    257
    313
    449
    521
    641
    2129
    2683
    3169
    4481
    4801
    4993
    9281
    9391
    15329
    16001
    62081
    87041
    95177
    115201
    1123841
    1575991
    2755141
    46491281
    48906241
    57960121
    449302081
    2146458241
    135954940577
    1351617784961
    1519919506241
    5543832524801
    18977135105281
    133887162150593
    760271707658753
    891331496412673
    8389466967771649
    25857830861383681
    42087586476067432961
    67676330893699091329
    41786654405449262434561
    13329331359075882949728001
    53485558780722726795678433
    17237463708283432044861971229329
    15479242366153908770415703777906321
    49000149510400908073294319016844801
    156698418518470859845117003045437009333421256792221625729
    1419862814692299906664212897075990686390699178466398669302977
    239606945588735188192230280771961513254261340019541160410044802292641
    25667702129305848151373544261920852104856347673532127443385632205510584072275605720273018108560631908722345351982231192806944345361
    1466434752495962539949097289671993445321192633166678455856507074359430291443317014714663982720699780612055639271603389931736997622917542961259878859440077561150124826979528557265847157711069658504501648854019922286143274875259412788735261391624270316995563432412091521

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-18781^5120+18781^(2*5120)-18781^(3*5120)+18781^(4*5120) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N-1 test using base 23
    Running N+1 test using discriminant 37, base 12+sqrt(37)
    Calling N-1 BLS with factored part 26.24% and helper 0.01% (78.74% proof)
    1-18781^5120+18781^(2*5120)-18781^(3*5120)+18781^(4*5120) is Fermat and Lucas PRP! (2788.4635s+0.0535s)

    Primality not yet proven.

  • leizhou says:

    a(42)=Phi[10,2779^5000]=1-2779^5000+2779^(2*5000)-2779^(3*5000)+2779^(4*5000)

    68,878 digits

    Found Prime Factors of p-1:
    2
    3
    5
    7
    11
    17
    41
    53
    61
    97
    101
    139
    251
    397
    401
    463
    1409
    1777
    1801
    2251
    3001
    9781
    26251
    28001
    45737
    52361
    70001
    77201
    85201
    165001
    177601
    280001
    314651
    920833
    2110001
    2200301
    3421751
    6625001
    7204501
    10207501
    17868001
    21135901
    21561251
    22845401
    30548641
    38353729
    40101251
    53954321
    99999401
    206726801
    502168801
    852246001
    1032553321
    1397032801
    1084014891931
    2385847627001
    3537417052501
    7396176017501
    13972379830001
    20154157730501
    24277376884001
    32270407337801
    109157220707501
    226249074206401
    6532974698346881
    7732923299076251
    15672950674328501
    45136319044665001
    51749431494525001
    1112436150131855561
    1297513681431824951
    10685011103812300001
    22086697520381696201
    742822421896253565438881251
    3131388976925284151934442001
    1787268072266115746172652964501
    9265862453343489881881505918369
    865939864818410533646043938554547101
    17802667340444960623059295991533399466226401
    244730009322447649521398891744226482312057735396101
    150938813307175499555267788970607494149709109397792650739043068520201
    4444312623136610776993589942272930472802123412041107017169910168232564704084222758166856885872117218109018905473215796704111096699450665549751890711035080958816222888340864444036018174419939902964022800266239907167788536015352567264577235136323786571047650640569012260215329240048682941830187684528150916001

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-2779^5000+2779^(2*5000)-2779^(3*5000)+2779^(4*5000) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N-1 test using base 23
    Running N+1 test using discriminant 79, base 20+sqrt(79)
    Calling N-1 BLS with factored part 26.69% and helper 0.02% (80.11% proof)
    1-2779^5000+2779^(2*5000)-2779^(3*5000)+2779^(4*5000) is Fermat and Lucas PRP! (2003.5697s+0.0119s)

    CHG proof screen output:
    (23:32) gp > \r CHG.GP
    realprecision = 28003 significant digits (28000 digits displayed)

    Welcome to the CHG primality prover!
    ————————————

    Input file is: GGF_n5_5000.in
    Certificate file is: GGF_n5_5000.out
    Found values of n, F and G.
    Number to be tested has 68878 digits.
    Modulus has 18387 digits.
    Modulus is 26.69395296% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 16, u = 7. Right endpoint has 13720 digits.
    Done! Time elapsed: 265814813ms.
    Running CHG with h = 15, u = 6. Right endpoint has 13438 digits.
    Done! Time elapsed: 224151547ms.
    Running CHG with h = 15, u = 6. Right endpoint has 13076 digits.
    Done! Time elapsed: 185175843ms.
    Running CHG with h = 15, u = 6. Right endpoint has 12822 digits.
    Done! Time elapsed: 148578610ms.
    Running CHG with h = 15, u = 6. Right endpoint has 12545 digits.
    Done! Time elapsed: 132095047ms.
    Running CHG with h = 15, u = 6. Right endpoint has 12291 digits.
    Done! Time elapsed: 87319093ms.
    Running CHG with h = 13, u = 5. Right endpoint has 11844 digits.
    Done! Time elapsed: 32560032ms.
    Running CHG with h = 13, u = 5. Right endpoint has 11539 digits.
    Done! Time elapsed: 31173968ms.
    Running CHG with h = 13, u = 5. Right endpoint has 11154 digits.
    Done! Time elapsed: 45009844ms.
    Running CHG with h = 11, u = 4. Right endpoint has 10461 digits.
    Done! Time elapsed: 35418641ms.
    Running CHG with h = 11, u = 4. Right endpoint has 9943 digits.
    Done! Time elapsed: 12198203ms.
    Running CHG with h = 9, u = 3. Right endpoint has 9103 digits.
    Done! Time elapsed: 6762484ms.
    Running CHG with h = 9, u = 3. Right endpoint has 7997 digits.
    Done! Time elapsed: 15702578ms.
    Running CHG with h = 7, u = 2. Right endpoint has 6049 digits.
    Done! Time elapsed: 1419907ms.
    Running CHG with h = 5, u = 1. Right endpoint has 2175 digits.
    Done! Time elapsed: 218843ms.
    A certificate has been saved to the file: GGF_n5_5000.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “GGF_n5_5000.in”.

    Pol[1, 1] with [h, u]=[5, 1] has ratio=1.506194722 E-13719 at X, ratio=5.3727582
    76 E-7196 at Y, witness=2.
    Pol[2, 1] with [h, u]=[7, 2] has ratio=1.813215239 E-8854 at X, ratio=4.71293358
    8 E-7749 at Y, witness=2.
    Pol[3, 1] with [h, u]=[9, 3] has ratio=4.039670426 E-4427 at X, ratio=1.78561613
    6 E-5843 at Y, witness=2.
    Pol[4, 1] with [h, u]=[7, 3] has ratio=6.67014851 E-1107 at X, ratio=2.967607850
    E-3319 at Y, witness=2.
    Pol[5, 1] with [h, u]=[11, 4] has ratio=4.007572251 E-3363 at X, ratio=6.4433914
    4 E-3363 at Y, witness=3.
    Pol[6, 1] with [h, u]=[11, 4] has ratio=1.291416094 E-519 at X, ratio=1.02802902
    9 E-2071 at Y, witness=7.
    Pol[7, 1] with [h, u]=[10, 5] has ratio=1.271819071 E-1529 at X, ratio=7.0691727
    3 E-3464 at Y, witness=2.
    Pol[8, 1] with [h, u]=[10, 5] has ratio=7.06917273 E-3464 at X, ratio=1.06518979
    4 E-1924 at Y, witness=2.
    Pol[9, 1] with [h, u]=[11, 5] has ratio=1.038528717 E-306 at X, ratio=3.83454608
    0 E-1529 at Y, witness=2.
    Pol[10, 1] with [h, u]=[12, 6] has ratio=2.306583942 E-1470 at X, ratio=4.267611
    188 E-2679 at Y, witness=97.
    Pol[11, 1] with [h, u]=[13, 6] has ratio=7.10033918 E-256 at X, ratio=4.24095980
    9 E-1529 at Y, witness=5.
    Pol[12, 1] with [h, u]=[13, 6] has ratio=2.092088597 E-277 at X, ratio=7.0879227
    1 E-1658 at Y, witness=7.
    Pol[13, 1] with [h, u]=[14, 6] has ratio=0.886434828 at X, ratio=1.859092352 E-1
    529 at Y, witness=2.
    Pol[14, 1] with [h, u]=[14, 6] has ratio=2.892455884 E-445 at X, ratio=1.8153420
    94 E-2171 at Y, witness=13.
    Pol[15, 1] with [h, u]=[16, 7] has ratio=1.000000000 at X, ratio=6.96875284 E-19
    73 at Y, witness=2.

    Validated in 163 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG certificate here.

  • leizhou says:

    a(41)=Phi[10,3928^4096]=1-3928^4096+3928^(2*4096)-3928^(3*4096)+3928^(4*4096)

    58,887 digits

    Found Prime Factors of p-1:
    2
    3
    5
    7
    11
    17
    37
    89
    193
    257
    491
    1217
    3929
    19993
    40961
    83401
    114689
    4086097
    133788241
    11793573889
    14078503598209
    111082404027713
    23386790571808774657
    370760798876308557313
    13869575236597460275121
    134108603374071427574273
    8048468319322832665061383169
    48689028769568233798223609857
    2682236259321778369585486936736771364353
    228132505214410879542555024857903200716687233
    4149227443751427297626882942806154977325848502647086986889004979746532929
    1893481730192957248452290402343976967887807844346104926503527348268833307249842563350237280537598946693964577266897248688930672134773536141642849266349596507552996212433606896531864912120051057598074484445503630501209903802900083469821078781125053705072212312076912322998255917152289057296427463479522247951370097074600581610170289635737762310274331505557139252376756405498105489804211449508378726902217688749771873594642953259554352753109475065475232628463805744400615471397737053081809299798489310292101007070222139658036691012388054731512406254870901507523354607995839545873463293338798192646556512945818001482792833016436282797516345681422122125366573383755925449899396145465562018817262510831503434182621704289523722286687769358227776538235017937540406874265220330851986647845558962830817117093212881308161

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-3928^4096+3928^(2*4096)-3928^(3*4096)+3928^(4*4096) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N+1 test using discriminant 29, base 10+sqrt(29)
    Calling N-1 BLS with factored part 27.04% and helper 0.00% (81.11% proof)
    1-3928^4096+3928^(2*4096)-3928^(3*4096)+3928^(4*4096) is Fermat and Lucas PRP! (1130.0777s+0.0079s)

    CHG proof screen output:
    (21:13) gp > \r CHG.GP
    realprecision = 30006 significant digits (30000 digits displayed)

    Welcome to the CHG primality prover!
    ————————————

    Input file is: GGF_n5_4096.in
    Certificate file is: GGF_n5_4096.out
    Found values of n, F and G.
    Number to be tested has 58887 digits.
    Modulus has 15921 digits.
    Modulus is 27.03536904% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 12, u = 5. Right endpoint has 11127 digits.
    Done! Time elapsed: 20162047ms.
    Running CHG with h = 12, u = 5. Right endpoint has 10919 digits.
    Done! Time elapsed: 19470734ms.
    Running CHG with h = 12, u = 5. Right endpoint has 10554 digits.
    Done! Time elapsed: 46600922ms.
    Running CHG with h = 13, u = 5. Right endpoint has 10208 digits.
    Done! Time elapsed: 33252140ms.
    Running CHG with h = 11, u = 4. Right endpoint has 9678 digits.
    Done! Time elapsed: 8884235ms.
    Running CHG with h = 11, u = 4. Right endpoint has 9214 digits.
    Done! Time elapsed: 6509859ms.
    Running CHG with h = 11, u = 4. Right endpoint has 8468 digits.
    Done! Time elapsed: 11340953ms.
    Running CHG with h = 9, u = 3. Right endpoint has 7758 digits.
    Done! Time elapsed: 2931063ms.
    Running CHG with h = 9, u = 3. Right endpoint has 6900 digits.
    Done! Time elapsed: 11030297ms.
    Running CHG with h = 7, u = 2. Right endpoint has 5674 digits.
    Done! Time elapsed: 1185984ms.
    Running CHG with h = 5, u = 1. Right endpoint has 3503 digits.
    Done! Time elapsed: 96375ms.
    A certificate has been saved to the file: GGF_n5_4096.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “GGF_n5_4096.in”.

    Pol[1, 1] with [h, u]=[4, 1] has ratio=1.693820586 E-2392 at X, ratio=5.48637156
    4 E-5895 at Y, witness=13.
    Pol[2, 1] with [h, u]=[7, 2] has ratio=1.990945915 E-11789 at X, ratio=1.1471395
    48 E-4342 at Y, witness=13.
    Pol[3, 1] with [h, u]=[9, 3] has ratio=1.338600509 E-5894 at X, ratio=1.92652727
    1 E-3677 at Y, witness=2.
    Pol[4, 1] with [h, u]=[7, 3] has ratio=8.99936293 E-1474 at X, ratio=7.60208701
    E-2576 at Y, witness=3.
    Pol[5, 1] with [h, u]=[11, 4] has ratio=4.750442238 E-2841 at X, ratio=3.9033536
    52 E-2839 at Y, witness=2.
    new witness: 29
    Pol[6, 1] with [h, u]=[9, 4] has ratio=5.081541220 E-747 at X, ratio=6.66778842
    E-2986 at Y, witness=29.
    new witness: 29
    Pol[7, 1] with [h, u]=[9, 4] has ratio=6.66778842 E-2986 at X, ratio=4.254841313
    E-1856 at Y, witness=29.
    new witness: 13
    Pol[8, 1] with [h, u]=[11, 5] has ratio=2.271398879 E-531 at X, ratio=6.04598459
    E-2654 at Y, witness=13.
    Pol[9, 1] with [h, u]=[12, 5] has ratio=0.999943782 at X, ratio=2.778060622 E-17
    30 at Y, witness=2.
    Pol[10, 1] with [h, u]=[12, 5] has ratio=1.659633395 E-793 at X, ratio=5.2783500
    02 E-1825 at Y, witness=2.
    Pol[11, 1] with [h, u]=[12, 5] has ratio=1.625164325 E-1148 at X, ratio=1.318848
    601 E-1039 at Y, witness=2.

    Validated in 53 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG certificate here.

  • leizhou says:

    a(40)=Phi[10,86^4000]=1-86^4000+86^(2*4000)-86^(3*4000)+86^(4*4000)

    30,952 digits

    Found Prime Factors of p-1:
    2
    3
    5
    11
    13
    17
    29
    41
    43
    101
    151
    191
    251
    281
    401
    569
    641
    1201
    1249
    1601
    2081
    3001
    3581
    4001
    4261
    7129
    7673
    13001
    16001
    17729
    18121
    25601
    36901
    57601
    61057
    77201
    103001
    149921
    326881
    699001
    889001
    1120001
    1318831
    1798001
    3776161
    5569001
    7495361
    37758001
    91344401
    20507296001
    68201110001
    265128253121
    792970889251
    18173596632001
    399087586312601
    1817313671510401
    2991774758524141
    3111323699168501
    7104249490808801
    8955690842006401
    44046937552756951
    490831741730341601
    758831549911415401
    1609456610239165801
    5034100672099673501
    5408926990383017561
    15878663489053279751
    226751243437978554901
    1145789395950119269201
    404323088012796038947297
    38724695378340660516314413001
    34496299175392289556651522734463439601
    3366059601815649045436649795054866499701
    5139085047092088517490765403718504985020066791359521
    49709028710750003543435278852111166394952195556754204355176573946588823120641
    5993377941415762392719244504162193722589771326885065538900335012896026265073857620555048799421411241725401
    28173780346657203796913888277260380209208129923678982068145832991498709673623906239522153843584288533657894104709208550087008376739836546616513846783427111734883899333196770516598283103633408001
    2659166242276148655755566188114115575190829924173430092081717423231983413839186868020869634690776773750987931947909507571918302413360025226943432114946397943277998760581107912215778599356388627466383671592976503002323987005380982361104017410563666036943082329059849156771823717984534874467908785291416071758888952919197725856257868347889887985617459006615955256155953224737271926878135139140544240737278697068925511648833740387899785004037226151622967526141225444700566060624292731130248314241

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-86^4000+86^(2*4000)-86^(3*4000)+86^(4*4000) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 23
    Running N-1 test using base 37
    Running N+1 test using discriminant 47, base 1+sqrt(47)
    Calling N-1 BLS with factored part 30.00% and helper 0.02% (90.02% proof)
    1-86^4000+86^(2*4000)-86^(3*4000)+86^(4*4000) is Fermat and Lucas PRP! (462.7047s+0.0033s)

    kp proof:
    (13:16) gp >\r kppm.gp

    (13:17) gp >N=1-86^4000+86^(2*4000)-86^(3*4000)+86^(4*4000)

    (13:18) gp > lsm=[2^4000,3,5^4,11,13,17,29,41,43^4000,101,151,251,281,401,569,6
    41,1201,1249,1601,2081,3001,3581,4001,7129,7673,13001,16001,17729,18121,25601,3
    6901,57601,61057,77201,103001,149921,326881,699001,889001,1120001,1318831,17980
    01,3776161,5569001,7495361,37758001,91344401,20507296001,68201110001,2651282531
    21,792970889251,18173596632001,399087586312601,1817313671510401,299177475852414
    1,3111323699168501,7104249490808801,8955690842006401,44046937552756951,49083174
    1730341601,758831549911415401,1609456610239165801,5034100672099673501,540892699
    0383017561,15878663489053279751,226751243437978554901,1145789395950119269201,40
    4323088012796038947297,38724695378340660516314413001,34496299175392289556651522
    734463439601,3366059601815649045436649795054866499701,5139085047092088517490765
    403718504985020066791359521,497090287107500035434352788521111663949521955567542
    04355176573946588823120641,5993377941415762392719244504162193722589771326885065
    538900335012896026265073857620555048799421411241725401,281737803466572037969138
    8827726038020920812992367898206814583299149870967362390623952215384358428853365
    7894104709208550087008376739836546616513846783427111734883899333196770516598283
    103633408001,265916624227614865575556618811411557519082992417343009208171742323
    1983413839186868020869634690776773750987931947909507571918302413360025226943432
    1149463979432779987605811079122157785993563886274663836715929765030023239870053
    8098236110401741056366603694308232905984915677182371798453487446790878529141607
    1758888952919197725856257868347889887985617459006615955256155953224737271926878
    1351391405442407372786970689255116488337403878997850040372261516229675261412254
    44700566060624292731130248314241]

    (13:21) gp > kpm(lsm,N)

    fraction = 300014/10^6
    OK 0
    OK 1
    OK 2
    OK 3
    OK 4
    OK 5

    Round of root:
    0
    Root OK: above the round

    Other roots are complex

    Proof completed

  • leizhou says:

    a(39)=Phi[10,2257^3200]=1-2257^3200+2257^(2*3200)-2257^(3*3200)+2257^(4*3200)

    42,926 dights

    Found Prime Factors of p-1:
    2
    3
    5
    11
    13
    17
    37
    41
    47
    61
    101
    151
    251
    401
    461
    601
    641
    701
    1129
    1301
    1601
    1951
    2753
    3761
    4001
    8641
    13217
    20071
    23041
    25601
    40801
    53201
    151201
    430897
    2376641
    4174561
    4727641
    12147701
    12194881
    30110833
    103415891
    136248041
    1293450131
    1439182001
    2599994401
    5629772801
    38673423361
    68986911601
    1595271285281
    4746762270001
    10639873343233
    13821038811828251
    694790762874403021
    5693813735330468641
    6487347886219314430201
    6913277998972274633801
    13258359614619024301233041
    19254130352046048090062201
    336683999034675896318894401
    2157802276612593891611214547192961
    5283418164478263844090018725382915901
    71233898436943033520032054886611318301
    884853443225812443563543686197799628466601
    70080372442984922914358311945518873420164551
    6230685755702062420755045810857408691512762401
    637476564346566410795940897477752783843363407014185640606601
    10774679908313519977545134022581161580809708462741399631015669638404596161
    47639615524972464255551157325360460067167794583023079180597168621342554241
    3161814255266921936208899722108082272957950925860459794765568393949218091958029434012887837862783272979579163347003826962267355206340958441727029541267634378775505830081
    1986338805535688647921493079454894711775080111604262256577029450371702958139909758836525570864394496722167433422377978278409771446024168232704374811330645871019537521987800625555733407908527838756375297

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-2257^3200+2257^(2*3200)-2257^(3*3200)+2257^(4*3200) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N-1 test using base 23
    Running N+1 test using discriminant 53, base 13+sqrt(53)
    Calling N-1 BLS with factored part 27.90% and helper 0.02% (83.72% proof)
    1-2257^3200+2257^(2*3200)-2257^(3*3200)+2257^(4*3200) is Fermat and Lucas PRP! (746.1535s+0.0078s)

    CHG proof screen output:
    ? \r CHG.GP
    *** Warning: new stack size = 134217728 (128.000 Mbytes).
    realprecision = 18013 significant digits (18000 digits displayed)

    Welcome to the CHG primality prover!
    ————————————

    Input file is: GGF_n5_3200.in
    Certificate file is: GGF_n5_3200.out
    Found values of n, F and G.
    Number to be tested has 42926 digits.
    Modulus has 11976 digits.
    Modulus is 27.897941151303339810% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 8, u = 3. Right endpoint has 7000 digits.
    Done! Time elapsed: 7478207ms.
    Running CHG with h = 8, u = 3. Right endpoint has 6849 digits.
    Done! Time elapsed: 6977452ms.
    Running CHG with h = 8, u = 3. Right endpoint has 6496 digits.
    Done! Time elapsed: 8008796ms.
    Running CHG with h = 8, u = 3. Right endpoint has 5673 digits.
    Done! Time elapsed: 6583565ms.
    Running CHG with h = 7, u = 2. Right endpoint has 5122 digits.
    Done! Time elapsed: 2021607ms.
    Running CHG with h = 6, u = 2. Right endpoint has 4002 digits.
    Done! Time elapsed: 1048425ms.
    Running CHG with h = 5, u = 1. Right endpoint has 3134 digits.
    Done! Time elapsed: 117813ms.
    A certificate has been saved to the file: GGF_n5_3200.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “GGF_n5_3200.in”.

    Pol[1, 1] with [h, u]=[4, 1] has ratio=3.009669380553270176 E-2479 at X, ratio=7.784452264251719249 E-3212 at Y, witness=2.
    Pol[2, 1] with [h, u]=[6, 2] has ratio=0.9889822777969200736 at X, ratio=3.691272490470477510 E-1737 at Y, witness=3.
    Pol[3, 1] with [h, u]=[6, 2] has ratio=0.6419154357707973634 at X, ratio=1.9642963334898130418 E-2239 at Y, witness=5.
    Pol[4, 1] with [h, u]=[8, 3] has ratio=0.3391669381633492307 at X, ratio=2.644655266480345063 E-1656 at Y, witness=2.
    Pol[5, 1] with [h, u]=[8, 3] has ratio=5.511660561571514141 E-523 at X, ratio=9.262707663718893510 E-2470 at Y, witness=2.
    Pol[6, 1] with [h, u]=[8, 3] has ratio=9.262707663718893510 E-2470 at X, ratio=6.964463973308996652 E-1059 at Y, witness=2.
    Pol[7, 1] with [h, u]=[8, 3] has ratio=6.964463973308996652 E-1059 at X, ratio=3.192234059047231211 E-454 at Y, witness=2.

    Validated in 4 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG certificate here.

  • leizhou says:

    a(38)=Phi[10,32275^3125]=1-32275^3125+32275^(2*3125)-32275^(3*3125)+32275^(4*3125)

    56,361 digits

    Found Prime Factors of p-1:
    2
    3
    5
    11
    31
    41
    101
    163
    251
    281
    401
    421
    509
    1291
    1601
    5501
    1023257
    1040021
    73983001
    79945231
    138060001
    260070401
    3254737001
    11577146501
    201180385501
    4159526362501
    6977596295251
    13583237822501
    220954647372774901
    1717541566430982401
    4894412966631502361401
    7612558665685431857380001
    173263826089030865775453751
    295346926868617598782692901
    102197396092630457140000170140881
    16048515791932191725479923121848601
    68762627120722833256055060752107193169615701
    102442543159623421332789371521547570310955710955250394636239222529925552405647859601

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-32275^3125+32275^(2*3125)-32275^(3*3125)+32275^(4*3125) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 2
    Running N-1 test using base 7
    Running N-1 test using base 17
    Running N+1 test using discriminant 23, base 1+sqrt(23)
    Calling N-1 BLS with factored part 25.80% and helper 0.01% (77.41% proof)
    1-32275^3125+32275^(2*3125)-32275^(3*3125)+32275^(4*3125) is Fermat and Lucas PRP! (1613.9501s+0.0112s)

    Primality is not yet proven.

  • leizhou says:

    a(37)=Phi[10,14103^2560]=1-14103^2560+14103^(2*2560)-14103^(3*2560)+14103^(4*2560)

    42,489 digits

    Found Prime Factors of p-1:
    2
    3
    5
    11
    17
    31
    37
    41
    43
    193
    241
    257
    281
    401
    641
    769
    881
    1567
    1913
    2273
    10433
    11777
    12161
    13313
    17011
    17569
    17921
    62401
    139121
    251701
    2749441
    4432081
    20436041
    495301393
    2135233537
    3286304321
    9171932411
    11625092041
    34732059521
    271007938241
    792323173633
    2325664023211
    22554567910634113
    52482110640559073
    106964754732090641
    169121124570983681
    818163588004343281
    18741761*33132733441
    179093575461637613013355084049
    339931045080266765214688812648961
    79829945009765837589787722877350261377
    11587140952563526292080873297698373285219553
    497244841793123959160325009688288357868843057106573083081
    17275000133394653309301477856363233661998468890126271515846072137277424889090109499927715841

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-14103^2560+14103^(2*2560)-14103^(3*2560)+14103^(4*2560) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N-1 test using base 23
    Running N+1 test using discriminant 53, base 13+sqrt(53)
    Calling N-1 BLS with factored part 26.40% and helper 0.02% (79.21% proof)
    1-14103^2560+14103^(2*2560)-14103^(3*2560)+14103^(4*2560) is Fermat and Lucas PRP! (758.3227s+0.0074s)

    CHG proven ended up with “Type” error:
    ? allocatemem(1024*1024*1024);
    *** Warning: new stack size = 1073741824 (1024.000 Mbytes).
    ? \r chgcertd.gp
    ? C=read(“GGF_n5_2560.out”);
    ? CHGcertD(C)

    Testing a PRP called “GGF_n5_2560.in”.

    Pol[1, 1] with [h, u]=[7, 2] has ratio=1.9013502299010434628 E-2373 at X, ratio=3.297947752372408841 E-8263 at Y, witness=13.
    Pol[2, 1] with [h, u]=[9, 3] has ratio=0.0004053358850669735711 at X, ratio=3.021162016990662409 E-5309 at Y, witness=2.
    Pol[3, 1] with [h, u]=[11, 4] has ratio=0.06711560552140243117 at X, ratio=2.2558667297596616028 E-4248 at Y, witness=2.
    Pol[4, 1] with [h, u]=[13, 5] has ratio=1.0000000000000000000 at X, ratio=2.3116069368088059594 E-3158 at Y, witness=2.
    Pol[5, 1] with [h, u]=[13, 5] has ratio=2.3116069368088059594 E-3158 at X, ratio=5.828231687483148911 E-1699 at Y, witness=2.
    Pol[6, 1] with [h, u]=[15, 6] has ratio=1.5785530250521719762 E-2765 at X, ratio=9.506574257439716351 E-2642 at Y, witness=7.
    Pol[7, 1] with [h, u]=[15, 6] has ratio=9.506574257439716351 E-2642 at X, ratio=1.3596867843339354309 E-1132 at Y, witness=7.
    “Type” error, so we quit!
    Goodbye!

    CHG certificate here.

  • leizhou says:

    a(36)=Phi[10,2692^2500]=1-3692^2500+3692^(2*2500)-3692^(3*2500)+3692^(4*2500)

    35,673 digits

    Found Prime Factors of p-1:
    2
    3
    5
    11
    13
    17
    41
    71
    101
    151
    251
    401
    449
    641
    761
    911
    1151
    1201
    1231
    3691
    4253
    8461
    74101
    96001
    129841
    539401
    1027001
    4900001
    7420001
    12360001
    12406501
    18283501
    283518601
    799232417
    10597285001
    13794000001
    15656737651
    15748687501
    26244308801
    42110664671
    86590380001
    153427548101
    204007455731
    584656151501
    84046221037001
    338152437795001
    332871232800641
    541347173900801
    2169239338659751
    2492277762264001
    10485883747138001
    26153709412818874961
    31012460984886873281
    30703847089792890395521
    816246793844462803882665301
    9068017859393131165435215701
    17326509626426748165339029655647951
    230256524210396641855458441480192251
    175631211293225463144153534167775802001041
    300855328008645425292372526836748232362001
    77131448722595542394160116171984180244838801
    1179682777877257335428704988179003639100097728068931505806201
    337821334776883346726012378730653529733754906090095236991198388884331405558190776966767632463555201009904999412438686896850112656888954045554825053506565838243947772241687892160706714836442956161634556695990961917593355347576601597036126589771816501

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-3692^2500+3692^(2*2500)-3692^(3*2500)+3692^(4*2500) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N-1 test using base 23
    Running N-1 test using base 29
    Running N-1 test using base 47
    Running N-1 test using base 53
    Running N+1 test using discriminant 73, base 2+sqrt(73)
    Calling N-1 BLS with factored part 27.69% and helper 0.00% (83.09% proof)
    1-3692^2500+3692^(2*2500)-3692^(3*2500)+3692^(4*2500) is Fermat and Lucas PRP! (822.3250s+0.0045s)

    CHG proof screen output:
    (12:22) gp > \r CHG.GP
    realprecision = 15008 significant digits (15000 digits displayed)

    Welcome to the CHG primality prover!
    ————————————

    Input file is: GGF_n5_2500.in
    Certificate file is: GGF_n5_2500.out
    Found values of n, F and G.
    Number to be tested has 35673 digits.
    Modulus has 9880 digits.
    Modulus is 27.69489653% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 10, u = 4. Right endpoint has 6035 digits.
    Done! Time elapsed: 4077672ms.
    Running CHG with h = 9, u = 3. Right endpoint has 5664 digits.
    Done! Time elapsed: 1910016ms.
    Running CHG with h = 9, u = 3. Right endpoint has 5316 digits.
    Done! Time elapsed: 2398719ms.
    Running CHG with h = 8, u = 3. Right endpoint has 4721 digits.
    Done! Time elapsed: 1836328ms.
    Running CHG with h = 7, u = 2. Right endpoint has 4298 digits.
    Done! Time elapsed: 611875ms.
    Running CHG with h = 7, u = 2. Right endpoint has 3460 digits.
    Done! Time elapsed: 466437ms.
    Running CHG with h = 5, u = 1. Right endpoint has 2595 digits.
    Done! Time elapsed: 110016ms.
    A certificate has been saved to the file: GGF_n5_2500.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “GGF_n5_2500.in”.

    Pol[1, 1] with [h, u]=[4, 1] has ratio=1.642286443 E-1751 at X, ratio=5.31652420
    8 E-2596 at Y, witness=17.
    Pol[2, 1] with [h, u]=[7, 2] has ratio=1.869582438 E-5191 at X, ratio=5.71805339
    E-1731 at Y, witness=17.
    Pol[3, 1] with [h, u]=[6, 2] has ratio=0.871000565 at X, ratio=3.195837518 E-167
    6 at Y, witness=7.
    Pol[4, 1] with [h, u]=[7, 3] has ratio=1.079765428 E-1270 at X, ratio=1.19992152
    3 E-1270 at Y, witness=5.
    Pol[5, 1] with [h, u]=[8, 3] has ratio=1.000000000 at X, ratio=3.746204675 E-178
    5 at Y, witness=7.
    Pol[6, 1] with [h, u]=[8, 3] has ratio=3.746204675 E-1785 at X, ratio=2.27132388
    3 E-1044 at Y, witness=7.
    Pol[7, 1] with [h, u]=[10, 4] has ratio=1.271549249 E-535 at X, ratio=1.02983421
    6 E-1483 at Y, witness=17.

    Validated in 7 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG certificate here.

  • leizhou says:

    a(35)=Phi[10,13513^2048]=1-13513^2048+13513^(2*2048)-13513^(3*2048)+13513^(4*2048)

    33,840 digits

    Found Prime Factors of p-1:
    2
    3
    5
    17
    29
    97
    193
    233
    257
    277
    563
    881
    2113
    7297
    9377
    11777
    13513
    65921
    209393
    1038337
    1087873
    49495393
    227703569
    30275292161
    211572744193
    1571565256769
    2174765564929
    3472222834049
    68567608774001
    13737490965323777
    69718647843932161
    43359680849655741852737
    112313944836428781593473793
    56274345435895862569708282873972961281
    3621133617552352168235443918242314447323716589441
    6371280099442898545346674447215690383459056192732122014346477793

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-13513^2048+13513^(2*2048)-13513^(3*2048)+13513^(4*2048) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 11
    Running N+1 test using discriminant 19, base 19+sqrt(19)
    Calling N-1 BLS with factored part 26.13% and helper 0.04% (78.44% proof)
    1-13513^2048+13513^(2*2048)-13513^(3*2048)+13513^(4*2048) is Fermat and Lucas PRP! (374.9279s+0.0163s)

    Primality not yet fully proven.

  • leizhou says:

    a(34)=Phi[10,7396^2000]=1-7396^2000+7396^(2*2000)-7396^(3*2000)+7396^(4*2000)

    30,952 digits

    a(34)=a(40)

  • leizhou says:

    a(33)=Phi[10,4965^1600]=1-4965^1600+4965^(2*1600)-4965^(3*1600)+4965^(4*1600)

    23,654 digits

    Found Prime Factors of p-1:
    2
    3
    5
    11
    13
    17
    41
    61
    71
    73
    97
    101
    191
    257
    281
    331
    401
    601
    641
    977
    1201
    1601
    3361
    4801
    4751
    5569
    7681
    19457
    32411
    40961
    76801
    90001
    161377
    605921
    1164001
    4008001
    6439541
    12325613
    42481451
    72739741
    125997701
    205420801
    1429075001
    1517827841
    11660191901
    19290677851
    32352546353
    1939613937601
    8863368060241
    12152275154689
    29381250350761
    55255028362631
    60221179982609
    303841447000313
    227721414927737281
    2838825266910381401
    21986342394388058881
    83224734749958760201
    129775648607215982454611909643856351
    4121009640214563638343288365513289761
    4733145075050209953699119180107516655271986348101
    125709442248195755241952051329039128676619631986529
    8162344191991502431329669302097397642474525238118872675961205392737979767539802807655612246303815521
    1669586317826076880171860486485852191033704922378091263900602751220565790451472814942927257304862399148564296728577
    2506180249335441699127774960660089597261335411375841484550762222575294723783682176172029561738862339684796473499246597268468379913477360105200402131039557324527905905018025944627283379772719819893491511884801599201

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-4965^1600+4965^(2*1600)-4965^(3*1600)+4965^(4*1600) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N+1 test using discriminant 29, base 14+sqrt(29)
    Calling N-1 BLS with factored part 29.10% and helper 0.00% (87.29% proof)
    1-4965^1600+4965^(2*1600)-4965^(3*1600)+4965^(4*1600) is Fermat and Lucas PRP! (187.1466s+0.0037s)

    CHG proof screen output:
    ? \r CHG.GP
    *** Warning: new stack size = 134217728 (128.000 Mbytes).
    realprecision = 10018 significant digits (10000 digits displayed)

    Welcome to the CHG primality prover!
    ————————————

    Input file is: /home/lzhou/prime/pfgw3.3.2/phis/CHG/1600/GGF_n5_1600.in
    Certificate file is: /home/lzhou/prime/pfgw3.3.2/phis/CHG/1600/GGF_n5_1600.out
    Found values of n, F and G.
    Number to be tested has 23654 digits.
    Modulus has 6883 digits.
    Modulus is 29.097131426894463570% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 6, u = 2. Right endpoint has 3007 digits.
    Done! Time elapsed: 239662ms.
    Running CHG with h = 6, u = 2. Right endpoint has 2559 digits.
    Done! Time elapsed: 230620ms.
    Running CHG with h = 5, u = 1. Right endpoint has 1802 digits.
    Done! Time elapsed: 29845ms.
    Running CHG with h = 5, u = 1. Right endpoint has 509 digits.
    Done! Time elapsed: 21544ms.
    A certificate has been saved to the file: /home/lzhou/prime/pfgw3.3.2/phis/CHG/1600/GGF_n5_1600.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “/home/lzhou/prime/pfgw3.3.2/phis/CHG/1600/GGF_n5_1600.in”.

    Pol[1, 1] with [h, u]=[4, 1] has ratio=9.209816546041183153 E-1890 at X, ratio=7.196200953690116199 E-2398 at Y, witness=2.
    Pol[2, 1] with [h, u]=[4, 1] has ratio=7.196200953690116199 E-2398 at X, ratio=1.0796018618774307017 E-1293 at Y, witness=2.
    Pol[3, 1] with [h, u]=[6, 2] has ratio=0.8298617842906335697 at X, ratio=1.4874439603162354396 E-1516 at Y, witness=7.
    Pol[4, 1] with [h, u]=[6, 2] has ratio=1.0714057919296877874 E-895 at X, ratio=1.6434501786990231190 E-895 at Y, witness=3.

    Validated in 1 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG certificate here.

  • leizhou says:

    a(32)=Phi[10,1353^1280]=1-1353^1280+1353^(2*1280)-1353^(3*1280)+1353^(4*1280)

    16,033 digits

    Found Prime Factors of p-1:
    2
    3
    5
    11
    13
    17
    41
    61
    241
    257
    353
    641
    677
    941
    1601
    2281
    3001
    4481
    7937
    8761
    10753
    11071
    37889
    52121
    321911
    471041
    833873
    1416161
    1474049
    2233601
    9489521
    14269441
    15941281
    31426601
    282799073
    1321528421
    1481236481
    22142501441
    28504257281
    112067395201
    1675564655441
    3348654326161
    1699556565744361
    2186612675609249
    396098815521624641
    470022132123948961
    41684087306595376001
    748955699462058184001
    1124027866654500468833
    2720589381467633250749441
    16823135947549123242427506544027029216503844686359479091201
    2062450686415769415129666222365932122445402373284800695787217481921

    Proven PRP by OpenPFGW using the above listed primes as helper:
    Primality testing 1-1353^1280+1353^(2*1280)-1353^(3*1280)+1353^(4*1280) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 23
    Running N-1 test using base 43
    Running N-1 test using base 47
    Running N+1 test using discriminant 59, base 4+sqrt(59)
    Calling N-1 BLS with factored part 28.05% and helper 0.07% (84.23% proof)
    1-1353^1280+1353^(2*1280)-1353^(3*1280)+1353^(4*1280) is Fermat and Lucas PRP! (101.8846s+0.0021s)

    CHG proof screen output:
    ? \r CHG.GP
    *** Warning: new stack size = 134217728 (128.000 Mbytes).
    realprecision = 8515 significant digits (8500 digits displayed)

    Welcome to the CHG primality prover!
    ————————————

    Input file is: /home/lzhou/prime/pfgw3.3.2/phis/CHG/1280/GGF_n5_1280.in
    Certificate file is: /home/lzhou/prime/pfgw3.3.2/phis/CHG/1280/GGF_n5_1280.out
    Found values of n, F and G.
    Number to be tested has 16033 digits.
    Modulus has 4498 digits.
    Modulus is 28.050803702899214990% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 8, u = 3. Right endpoint has 2542 digits.
    Done! Time elapsed: 888600ms.
    Running CHG with h = 8, u = 3. Right endpoint has 2417 digits.
    Done! Time elapsed: 798060ms.
    Running CHG with h = 8, u = 3. Right endpoint has 2127 digits.
    Done! Time elapsed: 814510ms.
    Running CHG with h = 7, u = 2. Right endpoint has 1912 digits.
    Done! Time elapsed: 254677ms.
    Running CHG with h = 6, u = 2. Right endpoint has 1474 digits.
    Done! Time elapsed: 128431ms.
    Running CHG with h = 5, u = 1. Right endpoint has 1138 digits.
    Done! Time elapsed: 18437ms.
    A certificate has been saved to the file: /home/lzhou/prime/pfgw3.3.2/phis/CHG/1280/GGF_n5_1280.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “/home/lzhou/prime/pfgw3.3.2/phis/CHG/1280/GGF_n5_1280.in”.

    Pol[1, 1] with [h, u]=[4, 1] has ratio=3.1520651414572591526 E-959 at X, ratio=2.0696947399243466938 E-1225 at Y, witness=19.
    Pol[2, 1] with [h, u]=[6, 2] has ratio=0.010869826920301646071 at X, ratio=1.6426500644927012385 E-673 at Y, witness=3.
    Pol[3, 1] with [h, u]=[6, 2] has ratio=0.9260263764890115546 at X, ratio=1.3964025656569581056 E-876 at Y, witness=23.
    Pol[4, 1] with [h, u]=[8, 3] has ratio=0.4607099170723954521 at X, ratio=3.996593309984639123 E-646 at Y, witness=5.
    Pol[5, 1] with [h, u]=[8, 3] has ratio=2.382569974139252710 E-301 at X, ratio=9.242778133572669820 E-871 at Y, witness=7.
    Pol[6, 1] with [h, u]=[8, 3] has ratio=9.242778133572669820 E-871 at X, ratio=1.3433868212851329615 E-373 at Y, witness=7.

    Validated in 1 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG certificate here,

  • leizhou says:

    a(31)=Phi[10,2199^1250]=1-2199^1250+2199^(2*1250)-2199^(3*1250)+2199^(4*1250)

    16,712 digits

    Found Prime Factors of p-1:
    2
    3
    5
    7
    11
    31
    41
    61
    101
    157
    241
    251
    281
    601
    701
    733
    1481
    3251
    9721
    11701
    17291
    40351
    201251
    254291
    230961301
    16418972501
    48512524961
    3632295160001
    134635401721501
    196225588976251
    453344624252501
    592260051875651
    5321857387463801
    140674910350292501
    190687752936590641
    63071319844317116251
    321180600673076967245251
    38238162281492509256558153135940521
    49426773666275497411922885281607398088921084263075446819451

    Proven PRP by OpenPFGW:
    Primality testing 1-2199^1250+2199^(2*1250)-2199^(3*1250)+2199^(4*1250) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 17
    Running N-1 test using base 19
    Running N+1 test using discriminant 29, base 10+sqrt(29)
    Calling N-1 BLS with factored part 27.09% and helper 0.02% (81.31% proof)
    1-2199^1250+2199^(2*1250)-2199^(3*1250)+2199^(4*1250) is Fermat and Lucas PRP! (104.7165s+0.0025s)

    CHG proof screen output:
    ? \r CHG.GP
    *** Warning: new stack size = 536870912 (512.000 Mbytes).
    realprecision = 7513 significant digits (7500 digits displayed)

    Welcome to the CHG primality prover!
    ————————————

    Input file is: /home/lzhou/prime/pfgw3.3.2/phis/CHG/1250/GGF_n5_1250.in
    Certificate file is: /home/lzhou/prime/pfgw3.3.2/phis/CHG/1250/GGF_n5_1250.out
    Found values of n, F and G.
    Number to be tested has 16712 digits.
    Modulus has 4529 digits.
    Modulus is 27.095818152800670032% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 12, u = 5. Right endpoint has 3128 digits.
    Done! Time elapsed: 7193005ms.
    Running CHG with h = 12, u = 5. Right endpoint has 3064 digits.
    Done! Time elapsed: 6233990ms.
    Running CHG with h = 12, u = 5. Right endpoint has 2967 digits.
    Done! Time elapsed: 6557646ms.
    Running CHG with h = 12, u = 5. Right endpoint has 2879 digits.
    Done! Time elapsed: 6514438ms.
    Running CHG with h = 11, u = 4. Right endpoint has 2750 digits.
    Done! Time elapsed: 3431032ms.
    Running CHG with h = 11, u = 4. Right endpoint has 2640 digits.
    Done! Time elapsed: 3456465ms.
    Running CHG with h = 11, u = 4. Right endpoint has 2431 digits.
    Done! Time elapsed: 3524620ms.
    Running CHG with h = 9, u = 3. Right endpoint has 2264 digits.
    Done! Time elapsed: 956062ms.
    Running CHG with h = 9, u = 3. Right endpoint has 2077 digits.
    Done! Time elapsed: 952181ms.
    Running CHG with h = 7, u = 2. Right endpoint has 1811 digits.
    Done! Time elapsed: 188846ms.
    Running CHG with h = 7, u = 2. Right endpoint has 1584 digits.
    Done! Time elapsed: 176420ms.
    Running CHG with h = 5, u = 1. Right endpoint has 1009 digits.
    Done! Time elapsed: 11534ms.
    A certificate has been saved to the file: /home/lzhou/prime/pfgw3.3.2/phis/CHG/1250/GGF_n5_1250.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “/home/lzhou/prime/pfgw3.3.2/phis/CHG/1250/GGF_n5_1250.in”.

    Pol[1, 1] with [h, u]=[4, 1] has ratio=1.5164973054060442926 E-615 at X, ratio=4.782854108698667764 E-1624 at Y, witness=2.
    Pol[2, 1] with [h, u]=[7, 2] has ratio=1.5130848967739664058 E-3247 at X, ratio=1.0253440778584114814 E-1150 at Y, witness=2.
    Pol[3, 1] with [h, u]=[7, 2] has ratio=0.3023561729068097643 at X, ratio=2.783942218263344449 E-454 at Y, witness=2.
    Pol[4, 1] with [h, u]=[9, 3] has ratio=9.899533456104065957 E-267 at X, ratio=3.720957293953139009 E-798 at Y, witness=3.
    Pol[5, 1] with [h, u]=[7, 3] has ratio=1.5925358186093381206 E-564 at X, ratio=1.7938227384473093284 E-564 at Y, witness=5.
    Pol[6, 1] with [h, u]=[11, 4] has ratio=4.439597470085346157 E-167 at X, ratio=1.3928188717244440722 E-665 at Y, witness=3.
    Pol[7, 1] with [h, u]=[9, 4] has ratio=6.494744805202421687 E-251 at X, ratio=1.0432989025347971412 E-838 at Y, witness=2.
    Pol[8, 1] with [h, u]=[10, 4] has ratio=0.8347627625351698111 at X, ratio=5.106842377319111524 E-439 at Y, witness=3.
    Pol[9, 1] with [h, u]=[11, 5] has ratio=4.128433025505467712 E-130 at X, ratio=1.1992955375308464617 E-647 at Y, witness=41.
    Pol[10, 1] with [h, u]=[12, 5] has ratio=0.5104843803898130217 at X, ratio=6.051206873773523831 E-439 at Y, witness=3.
    Pol[11, 1] with [h, u]=[12, 5] has ratio=0.8926668496685095845 at X, ratio=5.732465572228929201 E-487 at Y, witness=3.
    Pol[12, 1] with [h, u]=[12, 5] has ratio=4.522240678004094341 E-320 at X, ratio=7.854305408693594697 E-320 at Y, witness=3.

    Validated in 3 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG certificate here.

  • leizhou says:

    a(30)=Phi[10,951^1024]=1-951^1024+951^(2*1024)-951^(3*1024)+951^(4*1024)

    12,199 digits

    Found Prime Factors of p-1:
    2
    3
    5
    7
    17
    19
    97
    193
    257
    317
    641
    769
    937
    2729
    34369
    40961
    159937
    239873
    452201
    142245889
    431628289
    40559337473
    2381472717313
    5106434775041
    769732632934162433
    334513877809772987888801
    15545435467778440779784750000980441948449
    2914604628480219065024736459216074151868073183208103087472666364231463025588136369576766529

    Proven PRP by OpenPFGW:
    Primality testing 1-951^1024+951^(2*1024)-951^(3*1024)+951^(4*1024) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 23
    Running N-1 test using base 31
    Running N+1 test using discriminant 41, base 8+sqrt(41)
    Calling N-1 BLS with factored part 27.28% and helper 0.00% (81.83% proof)
    1-951^1024+951^(2*1024)-951^(3*1024)+951^(4*1024) is Fermat and Lucas PRP! (34.0934s+0.0037s)

    CHG proof screen output
    ? \r CHG.GP
    *** Warning: new stack size = 134217728 (128.000 Mbytes).
    realprecision = 8515 significant digits (8500 digits displayed)

    Welcome to the CHG primality prover!
    ————————————

    Input file is: /home/lzhou/prime/pfgw3.3.2/phis/CHG/1024.2/GGF_n5_1024.in
    Certificate file is: /home/lzhou/prime/pfgw3.3.2/phis/CHG/1024.2/GGF_n5_1024.out
    Found values of n, F and G.
    Number to be tested has 12199 digits.
    Modulus has 3328 digits.
    Modulus is 27.276365863651275450% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 12, u = 5. Right endpoint has 2217 digits.
    Done! Time elapsed: 5183013ms.
    Running CHG with h = 11, u = 4. Right endpoint has 2138 digits.
    Done! Time elapsed: 2443198ms.
    Running CHG with h = 11, u = 4. Right endpoint has 2049 digits.
    Done! Time elapsed: 2530304ms.
    Running CHG with h = 10, u = 4. Right endpoint has 1951 digits.
    Done! Time elapsed: 1607592ms.
    Running CHG with h = 10, u = 4. Right endpoint has 1832 digits.
    Done! Time elapsed: 1604879ms.
    Running CHG with h = 9, u = 3. Right endpoint has 1715 digits.
    Done! Time elapsed: 764758ms.
    Running CHG with h = 9, u = 3. Right endpoint has 1597 digits.
    Done! Time elapsed: 723254ms.
    Running CHG with h = 9, u = 3. Right endpoint has 1431 digits.
    Done! Time elapsed: 706179ms.
    Running CHG with h = 7, u = 2. Right endpoint has 1204 digits.
    Done! Time elapsed: 164830ms.
    Running CHG with h = 5, u = 1. Right endpoint has 878 digits.
    Done! Time elapsed: 40934ms.
    A certificate has been saved to the file: /home/lzhou/prime/pfgw3.3.2/phis/CHG/1024.2/GGF_n5_1024.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “/home/lzhou/prime/pfgw3.3.2/phis/CHG/1024.2/GGF_n5_1024.in”.

    Pol[1, 1] with [h, u]=[4, 1] has ratio=3.297161725600899846 E-516 at X, ratio=7.305083966748162134 E-978 at Y, witness=2.
    Pol[2, 1] with [h, u]=[7, 2] has ratio=3.529713476532110786 E-1955 at X, ratio=3.280296881135144090 E-652 at Y, witness=2.
    Pol[3, 1] with [h, u]=[9, 3] has ratio=4.693217347032501564 E-228 at X, ratio=1.6448948476911944098 E-682 at Y, witness=7.
    Pol[4, 1] with [h, u]=[7, 3] has ratio=3.701764132916840871 E-386 at X, ratio=1.6094814383703918343 E-497 at Y, witness=3.
    Pol[5, 1] with [h, u]=[8, 3] has ratio=0.8734928290915691618 at X, ratio=2.200516331241117326 E-357 at Y, witness=23.
    Pol[6, 1] with [h, u]=[9, 4] has ratio=5.716391202518547967 E-117 at X, ratio=1.0677947191781277243 E-465 at Y, witness=2.
    Pol[7, 1] with [h, u]=[9, 4] has ratio=1.0677947191781277243 E-465 at X, ratio=3.027551804095253631 E-476 at Y, witness=2.
    Pol[8, 1] with [h, u]=[10, 4] has ratio=1.0000000000000000000 at X, ratio=4.127131920631514080 E-393 at Y, witness=11.
    Pol[9, 1] with [h, u]=[10, 4] has ratio=4.127131920631514080 E-393 at X, ratio=1.7458848636980266024 E-359 at Y, witness=11.
    Pol[10, 1] with [h, u]=[12, 5] has ratio=0.6227501349948038056 at X, ratio=6.799002328964641506 E-396 at Y, witness=2.

    Validated in 2 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG Certificate here.

  • leizhou says:

    a(29)=Phi[10,2866^1000]=1-2866^1000+2866^(2*1000)-2866^(3*1000)+2866^(4*1000)

    13,830 digits

    Found Prime Factors of p-1:
    2
    3
    5
    11
    41
    47
    61
    101
    151
    191
    251
    353
    601
    1433
    1951
    2251
    3001
    5501
    23269
    219281
    671501
    1858651
    25057793
    27961441
    343890751
    561625249
    11313818501
    88197048451
    329232305291
    5233946392151
    67469073169937
    4552075280222246897964373261
    1472412635145433490530776216108429283681
    73661292000510194783244623925134228900220266651
    139041924655075182857231609496958379107237826803053151
    20721394402220809402470170274305791519254668054259233521

    Proven PRP by OpenPFGW:
    Primality testing 1-2866^1000+2866^(2*1000)-2866^(3*1000)+2866^(4*1000) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 17
    Running N-1 test using base 23
    Running N+1 test using discriminant 37, base 14+sqrt(37)
    Calling N-1 BLS with factored part 27.77% and helper 0.08% (83.38% proof)
    1-2866^1000+2866^(2*1000)-2866^(3*1000)+2866^(4*1000) is Fermat and Lucas PRP! (74.4629s+0.0020s)

    CHG proof screen output:
    (19:09) gp > \r examples\CHG

    Welcome to the CHG primality prover!
    ————————————

    Input file is: Y:\prime\pfgw3.3.2\phis\CHG\1000\GGF_n5_1000.in
    Certificate file is: Y:\prime\pfgw3.3.2\phis\CHG\1000\GGF_n5_1000.out
    Found values of n, F and G.
    Number to be tested has 13830 digits.
    Modulus has 3833 digits.
    Modulus is 27.70999113% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 10, u = 4. Right endpoint has 2334 digits.
    Done! Time elapsed: 1225297ms.
    Running CHG with h = 9, u = 3. Right endpoint has 2182 digits.
    Done! Time elapsed: 723328ms.
    Running CHG with h = 9, u = 3. Right endpoint has 2026 digits.
    Done! Time elapsed: 743203ms.
    Running CHG with h = 8, u = 3. Right endpoint has 1824 digits.
    Done! Time elapsed: 769969ms.
    Running CHG with h = 7, u = 2. Right endpoint has 1655 digits.
    Done! Time elapsed: 375484ms.
    Running CHG with h = 7, u = 2. Right endpoint has 1331 digits.
    Done! Time elapsed: 240047ms.
    Running CHG with h = 5, u = 1. Right endpoint has 966 digits.
    Done! Time elapsed: 41000ms.
    A certificate has been saved to the file: Y:\prime\pfgw3.3.2\phis\CHG\1000\GGF_
    n5_1000.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “Y:\prime\pfgw3.3.2\phis\CHG\1000\GGF_n5_1000.in”.

    Pol[1, 1] with [h, u]=[4, 1] has ratio=1.208991093 E-694 at X, ratio=4.52285866
    E-1097 at Y, witness=13.
    Pol[2, 1] with [h, u]=[7, 2] has ratio=1.353053792 E-2193 at X, ratio=1.10604217
    5 E-731 at Y, witness=13.
    Pol[3, 1] with [h, u]=[6, 2] has ratio=0.693099883 at X, ratio=4.614624124 E-649
    at Y, witness=2.
    Pol[4, 1] with [h, u]=[7, 3] has ratio=2.823157962 E-507 at X, ratio=3.219655275
    E-507 at Y, witness=2.
    Pol[5, 1] with [h, u]=[8, 3] has ratio=1.000000000 at X, ratio=6.51856104 E-607
    at Y, witness=7.
    Pol[6, 1] with [h, u]=[8, 3] has ratio=6.51856104 E-607 at X, ratio=3.131600253
    E-467 at Y, witness=7.
    Pol[7, 1] with [h, u]=[10, 4] has ratio=3.577591556 E-172 at X, ratio=1.42926488
    9 E-608 at Y, witness=13.

    Validated in 2 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG Certifiacte here.

  • leizhou says:

    a(28)=Phi[10,1274^800]=1-1274^800+1274^(2*800)-1274^(3*800)+1274^(4*800)

    9,937 digits

    Found Prime Factors of p-1:
    2
    3
    5
    7
    11
    13
    17
    19
    41
    67
    101
    137
    401
    701
    1171
    1409
    2801
    3191
    3329
    5153
    9601
    10601
    11551
    16001
    25601
    28351
    30161
    34721
    88321
    140891
    1079681
    1228001
    1264129
    1623077
    7946581
    8365061
    44134241
    108330721
    469000481
    946550321
    1075362641
    5799897553
    6943615801
    233772777473
    160243615955201
    8214188603744341
    22858833064468801
    6099204480446452801
    1532418942996024103605679009
    6936256826041956531609814245079225659001
    791786009283161750926035868654189600872973040801
    77487310953404247114192148492153103873846305261721101
    1069432429185705895631586384273286243218040708194819227338622\
    9980221185087771990245956180878180521774185615407294434619732\
    4424055081944642500016244278316842015818413043429731801214348\
    1711896290215617415629304537770497782279624601

    PRP screen output from OpenPFGW:
    Primality testing 1-1274^800+1274^(2*800)-1274^(3*800)+1274^(4*800) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 37
    Running N-1 test using base 47
    Running N-1 test using base 71
    Running N+1 test using discriminant 79, base 15+sqrt(79)
    Calling N-1 BLS with factored part 31.61% and helper 0.02% (94.86% proof)
    1-1274^800+1274^(2*800)-1274^(3*800)+1274^(4*800) is Fermat and Lucas PRP! (45.0762s+0.0011s)

    kp proof screen output:
    \r kppm

    N=1-1274^800+1274^(2*800)-1274^(3*800)+1274^(4*800)

    lsm=[2^800,3,5^4,7^1600,11,13^800,17,19,41,67,101,137,401,701,1171,1409,2801,3191,33
    29,5153,9601,10601,11551,16001,25601,28351,30161,34721,88321,140891,1079681,1228
    001,1264129,1623077,7946581,8365061,44134241,108330721,469000481,946550321,10753
    62641,5799897553,6943615801,233772777473,160243615955201,8214188603744341,228588
    33064468801,6099204480446452801,1532418942996024103605679009,6936256826041956531
    609814245079225659001,791786009283161750926035868654189600872973040801,774873109
    53404247114192148492153103873846305261721101,10694324291857058956315863842732862
    43218040708194819227338622998022118508777199024595618087818052177418561540729443
    46197324424055081944642500016244278316842015818413043429731801214348171189629021
    5617415629304537770497782279624601]

    (11:17) gp > kpm(lsm,N)

    fraction = 316140/10^6
    OK 0
    OK 1
    OK 2
    OK 3
    OK 4
    OK 5

    Round of root:
    0
    Root OK: above the round

    Other roots are complex

    Proof completed

    Certificates including the 229 digits factor of p-1 here.

  • leizhou says:

    a(27)=Phi[10,2123^640]=1-2123^640+2123^(2*640)-2123^(3*640)+2123^(4*640)

    8,517 digits

    Found Prime Factors of p-1:
    2
    3
    5
    11
    17
    31
    41
    59
    193
    257
    449
    641
    821
    1061
    10993
    77569
    166273
    547741
    686321
    1589377
    1610681
    3245569
    3543041
    97005121
    1305284353
    1330683337
    1337920513
    39853739777
    89500053121
    654988635251
    20323784966761
    183531851206432381
    206333600987563689620107441
    65232613565996134472134965102705869052257377
    105728086185887951345406191545165949147162305001
    52530108121785709366708672122186481758870221062184808081650884\
    00288803288402041294588046251692267840330288692952077815757744\
    11297174998284761241579999122872786344687506425909061980519837\
    745337803173829569165121
    16258151788407946298951839088634460456029119974632410105122826\
    98503607312425542807349574260599935796558495086404957786102806\
    34098957831235356350895119419946720924418082098389856838286123\
    94317374369795973822528605364756093870139833649925726766207776\
    82671320800652055319384618045919691487187453059719716266163610\
    58971831596143303189481472804255245530297695007391421509323803\
    94619717345914522793087925450760779011332714469181065168019167\
    95726647323648199734547282766428474632433345099702742374507109\
    91721239872852184198451079539476375978987044788060181965722690\
    43486775012554169094248290334374797060167485456754835635503264\
    78568928998934910044521426594560233273442561570008792669822930\
    72058741385840034453945541384791704193981666295863185399520707\
    51583612932942327382150002976369408870340726886748645342894984\
    384691206208750647268353

    Screen output of OpenPFGW proof:
    Primality testing 1-2123^640+2123^(2*640)-2123^(3*640)+2123^(4*640) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N+1 test using discriminant 29, base 10+sqrt(29)
    Calling N-1 BLS with factored part 40.68% and helper 0.06% (122.09% proof)
    1-2123^640+2123^(2*640)-2123^(3*640)+2123^(4*640) is prime! (22.0369s+0.0011s)

    Primo Certificates of the two large prime factors of p-1 are here.

  • leizhou says:

    a(26)=Phi[10,2336^625]=1-2336^625+2336^(2*625)-2336^(3*625)+2336^(4*625)

    8,422 digits

    Found Prime Factors of p-1:
    2
    5
    11
    73
    401
    467
    3251
    1086901
    4193251
    4444621
    5456897
    1479067501
    541644849511
    2587460310751
    398496915729251
    18314142035325601
    199502294094588751621
    29303360464845025432260814442119479626409918401951
    3989076032726071335951142640182635992487960314909339838429698872\
    1708185136216958629572397569230178977282805484154917662706224160\
    5654238275984703891649931427182932594292026231625241204090170456\
    0749374223567797001504038120082062349028981819224275818909429037\
    5323106463028618000309109568343161918988693791794275638251

    The 314 digits prime factor of p-1 is proven using PRIMO, certificate in the certificate pack.

    PRP screen output from OpenPFGW:
    Primality testing 1-2336^625+2336^(2*625)-2336^(3*625)+2336^(4*625) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 3
    Running N-1 test using base 7
    Running N+1 test using discriminant 17, base 8+sqrt(17)
    Calling N-1 BLS with factored part 30.84% and helper 0.01% (92.53% proof)
    1-2336^625+2336^(2*625)-2336^(3*625)+2336^(4*625) is Fermat and Lucas PRP! (24.1172s+0.0008s)

    kp proof screen output:
    \r kppm

    N=1-2336^625+2336^(2*625)-2336^(3*625)+2336^(4*625)

    lsm=[2^3125,5^5,11,73^625,401,467,3251,1086901,4193251,4444621,5456897,1479067501,541644849511,2587460310751,398496915729251,18314142035325601,199502294094588751621,2930336046484502543226
    0814442119479626409918401951,3989076032726071335951142640182635992487960314909339838429698872170818513621695862957239756923017897728280548415491766270622416056542382759847038916499314
    2718293259429202623162524120409017045607493742235677970015040381200820623490289818192242758189094290375323106463028618000309109568343161918988693791794275638251]

    (19:48) gp > kpm(lsm,N)

    fraction = 307820/10^6
    OK 0
    OK 1
    OK 2
    OK 3
    OK 4
    OK 5

    Round of root:
    -6278945804716475622674389778543577310952295855046343847469029637825566133759628
    89694925881219900050141125619029837663846490434891919036290716570182426448812436
    59338739824075585851285961326487267886289955435600568796129115780719429554746958
    33279794982356437628417711401708047751867995315339054071603365028324385813718927
    30785294603052513408462661284715171350973145347965067168669062810878226264449957
    79213679854941319077960826651093848510932496493339894919788413591666214443720060
    63544348131539466032539652763506545532514960681512374397062346128681588182600880
    80821538580749401548934822853402423143947949322149279585801405582740159635476719
    35422477251196452103034494412071629906452743520747280157174395936135494687236108
    47394580115533283330682480815720316534391549155299778756038102499349518093101332
    1637929509
    Root OK: above the round

    Round of root:
    0
    Root OK: below the round

    Round of root:
    62789458047164756226743897785435773109522958550463438474690296378255661337596288
    96949258812199000501411256190298376638464904348919190362907165701824264488124365
    93387398240755858512859613264872678862899554356005687961291157807194295547469583
    32797949823564376284177114017080477518679953153390540716033650283243858137189273
    07852946030525134084626612847151713509731453479650671686690628108782262644499577
    92136798549413190779608266510938485109324964933398949197884135916662144437200606
    35443481315394660325396527635065455325149606815123743970623461286815881826008808
    08215385807494015489348228534024231439479493221492795858014055827401596354767193
    54224772511964521030344944120716299064527435207472801571743959361354946872361084
    73945801155332833306824808157203165343915491552997787560381024993495180931013321
    637929509
    Root OK: below the round

    Proof completed

    Certificate here.

  • leizhou says:

    a(25)=Phi[10,34^512]=1-34^512+34^(2*512)-34^(3*512)+34^(4*512)

    3,137 digits

    Equals to a(21)

  • leizhou says:

    a(24)=Phi[10,511^500]=1-511^500+511^(2*500)-511^(3*500)+511^(4*500)

    5,417 digits

    Found Prime Factors of p-1:
    2
    3
    5
    7
    11
    17
    31
    61
    71
    73
    101
    137
    251
    401
    593
    601
    953
    5521
    7901
    9001
    9851
    10501
    22501
    32401
    306121
    1138901
    12282833
    50383441
    112922101
    1420889501
    58293427001
    319142001889
    734778061601
    4005502932251
    211742894078101
    229631614132001
    7725120944429201
    126812256620356381
    513452027872643501
    2451039636224762310675352082651
    1391999738492087545779388034427591879001
    1679435125764571207199153088231147280805327515865168619978956630752707405601
    13977084342571293872308109180963667991208015959390566489806990748380101845642395559448587001

    Screen Output of OpenPFGW proof:

    Primality testing 1-511^500+511^(2*500)-511^(3*500)+511^(4*500) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 23
    Running N-1 test using base 37
    Running N+1 test using discriminant 43, base 18+sqrt(43)
    Calling N-1 BLS with factored part 33.70% and helper 0.07% (101.17% proof)
    1-511^500+511^(2*500)-511^(3*500)+511^(4*500) is prime! (9.7577s+0.0008s)

  • leizhou says:

    a(23)=Phi[10,647^400]=1-647^400+647^(2*400)-647^(3*400)+647^(4*400)

    4,498 digits

    Found Prime Factors of p-1:
    2
    3
    5
    11
    17
    19
    31
    41
    61
    73
    101
    193
    241
    401
    647
    701
    1021
    1801
    3221
    13697
    14561
    36353
    420001
    430193
    511801
    4512901
    5359801
    5453521
    22590401
    56724001
    151779601
    254316301
    1200229417
    3931644401
    4407288001
    5643970091
    15954977651
    171833389601
    148089363924737
    6903391930108601
    17528421577675201
    108020057546754701
    504967281311738081
    6912505576413737101
    39737484959892211301
    602313651062925384901
    203328015737502170561281
    34098250797899432902407124520298301
    942906198444279251975404844847530188126023361
    22750279788656768299977247892852668296972279521655752257
    55291857184356732714502409132562488499965918078932045540961
    16055247984496002837749572727600900255632071177599487981777013220401

    OpenPFGW proof screen output:

    Primality testing 1-647^400+647^(2*400)-647^(3*400)+647^(4*400) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 23
    Running N+1 test using discriminant 37, base 12+sqrt(37)
    Calling N-1 BLS with factored part 38.43% and helper 0.15% (115.44% proof)
    1-647^400+647^(2*400)-647^(3*400)+647^(4*400) is prime! (5.8490s+0.0007s)

  • leizhou says:

    a(22)=Phi[10,1619^320]=1-1619^320+1619^(2*320)-1619^(3*320)+1619^(4*320)

    4,108 digits

    Found Prime Factors of p-1:
    2
    3
    5
    11
    17
    41
    61
    71
    97
    233
    251
    281
    809
    1151
    1619
    2161
    3433
    9721
    21569
    23761
    71329
    77093
    78593
    704321
    4294649
    27764801
    108462901
    385765741
    2501592001
    4090999921
    20973301121
    81760188281
    183683543920963649
    3462504332700185321
    300303869105695313297
    3044057549445299254561
    18873868836708273720221
    876620181544868058248423393
    1144016412612648573399025547136338219064064146226779787616067440801

    OpenPFGW proof screen output:
    Primality testing 1-1619^320+1619^(2*320)-1619^(3*320)+1619^(4*320) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N-1 test using base 23
    Running N+1 test using discriminant 43, base 9+sqrt(43)
    Calling N-1 BLS with factored part 33.29% and helper 0.14% (100.04% proof)
    1-1619^320+1619^(2*320)-1619^(3*320)+1619^(4*320) is prime! (5.9912s+0.0007s)

  • leizhou says:

    a(21)=Phi[10,1156^256]=1-1156^256+1156^(2*256)-1156^(3*256)+1156^(4*256)

    3,137 digits

    Found Prime Factors of p-1:
    2
    3
    5
    7
    11
    13
    17
    89
    97
    257
    47441
    1336337
    7477121
    37642417
    2583249857
    49521227489
    65959705961729
    207413006868032513
    154186600910808898663635581124287233

    Proven PRP by OpenPFGW:

    Primality testing 1-1156^256+1156^(2*256)-1156^(3*256)+1156^(4*256) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N+1 test using discriminant 29, base 10+sqrt(29)
    Calling N-1 BLS with factored part 29.08% and helper 0.36% (87.62% proof)
    1-1156^256+1156^(2*256)-1156^(3*256)+1156^(4*256) is Fermat and Lucas PRP! (2.3154s+0.0003s)

    CHG proof screen output:
    (13:52) gp > \r examples\CHG
    realprecision = 16000 significant digits

    Welcome to the CHG primality prover!
    ————————————

    Input file is: Y:\prime\pfgw3.3.2\phis\CHG\256\GGF_n5_256.in
    Certificate file is: Y:\prime\pfgw3.3.2\phis\CHG\256\GGF_n5_256.out
    Found values of n, F and G.
    Number to be tested has 3137 digits.
    Modulus has 907 digits.
    Modulus is 28.89626768% of n.

    NOTICE: This program assumes that n has passed
    a BLS PRP-test with n, F, and G as given. If
    not, then any results will be invalid!

    Square test passed for F >> G. Using modified right endpoint.

    Search for factors congruent to 1.
    Running CHG with h = 6, u = 2. Right endpoint has 418 digits.
    Done! Time elapsed: 193187ms.
    Running CHG with h = 6, u = 2. Right endpoint has 370 digits.
    Done! Time elapsed: 183610ms.
    Running CHG with h = 5, u = 1. Right endpoint has 275 digits.
    Done! Time elapsed: 33000ms.
    Running CHG with h = 5, u = 1. Right endpoint has 162 digits.
    Done! Time elapsed: 16546ms.
    A certificate has been saved to the file: Y:\prime\pfgw3.3.2\phis\CHG\256\GGF_n
    5_256.out

    Running David Broadhurst’s verifier on the saved certificate…

    Testing a PRP called “Y:\prime\pfgw3.3.2\phis\CHG\256\GGF_n5_256.in”.

    Pol[1, 1] with [h, u]=[4, 1] has ratio=7.77298486 E-245 at X, ratio=5.79941090 E
    -339 at Y, witness=61.
    Pol[2, 1] with [h, u]=[4, 1] has ratio=5.79941090 E-339 at X, ratio=1.796640949
    E-113 at Y, witness=61.
    Pol[3, 1] with [h, u]=[6, 2] has ratio=1.314808601 E-106 at X, ratio=9.61072818
    E-191 at Y, witness=2.
    Pol[4, 1] with [h, u]=[6, 2] has ratio=1.894588607 E-97 at X, ratio=1.894588607
    E-97 at Y, witness=2.

    Validated in 1 sec.

    Congratulations! n is prime!
    Goodbye!

    CHG certificate: here

  • leizhou says:

    a(20)=Phi[10,911^250]=1-911^250+911^(2*250)-911^(3*250)+911^(4*250)

    2,960 digits

    Found Prime Factors of a(20)-1 (GGF_n5_250.helper):
    2
    3
    5
    7
    11
    13
    19
    251
    401
    701
    761
    911
    929
    1249
    1601
    1721
    21601
    27751
    45751
    217201
    296801
    5992751
    17884211
    399775501
    129053101501
    14177283116650751
    224799415189780702751
    9727681571205965505101
    225404233715206382855642201
    687710207363280131260208541153901
    1361593766076481797345010718790317173721

    Primality testing 1-911^250+911^(2*250)-911^(3*250)+911^(4*250) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 17
    Running N+1 test using discriminant 53, base 6+sqrt(53)
    Calling N-1 BLS with factored part 33.79% and helper 0.01% (101.38% proof)
    1-911^250+911^(2*250)-911^(3*250)+911^(4*250) is prime! (2.9712s+0.0006s)

  • leizhou says:

    a(19)=Phi[10,521^200]=1-521^200+521^(2*200)-521^(3*200)+521^(4*200)

    2,174 digits

    Found Prime Factors of a(19)-1 (GGF_n5_200.helper):
    2
    3
    5
    11
    13
    29
    41
    61
    73
    101
    113
    151
    181
    461
    521
    701
    1301
    1931
    4001
    9281
    9901
    12641
    17761
    75571
    135721
    307201
    671701
    1177801
    1398521
    4464451
    4466009
    13976701
    38083411
    1587869681
    21309676961
    50977416241
    265657428737
    630005745401
    13700492067601
    1164303475151101
    12051659678309401
    19443503877299101
    38880452674681601
    10082608501590846691648561
    180563093712392283737330753
    919011617386572718190834546555970401
    131910046294478872520745897311794873248701
    21086259227221421906234660707211504693097860101

    Primality testing 1-521^200+521^(2*200)-521^(3*200)+521^(4*200) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 17
    Running N-1 test using base 23
    Running N+1 test using discriminant 37, base 12+sqrt(37)
    Calling N-1 BLS with factored part 44.38% and helper 0.54% (133.68% proof)
    1-521^200+521^(2*200)-521^(3*200)+521^(4*200) is prime! (1.6821s+0.0005s)

  • leizhou says:

    a(18)=Phi[10,2^160]=1-2^160+2^(2*160)-2^(3*160)+2^(4*160)

    193 digits

    Equals to a(14)

  • leizhou says:

    a(17)=Phi[10,56^128]=1-56^128+56^(2*128)-56^(3*128)+56^(4*128)

    896 digits

    Prime Factors of a(17)-1:
    GGF_n5_128.helper:
    2
    7
    5
    11
    17
    3137
    3329
    4289
    9834497
    12324161
    81227777
    112790017
    422229601
    461386369
    272743988641
    5689253622001
    478998073521217
    9204182701393835713

    Primality testing 1-56^128+56^(2*128)-56^(3*128)+56^(4*128) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 23
    Running N+1 test using discriminant 37, base 12+sqrt(37)
    Calling N-1 BLS with factored part 38.45% and helper 0.50% (115.94% proof)
    1-56^128+56^(2*128)-56^(3*128)+56^(4*128) is prime! (0.2256s+0.0004s)

  • leizhou says:

    a(16)=Phi[10,232^125]

    888 digits

    Prime Factors of a(16)-1:
    GGF_n5_125.helper:

    2
    3
    5
    7
    11
    29
    151
    251
    281
    2153
    2531
    4091
    4751
    13001
    97001
    1449001
    2435201
    4893001
    17304123044101
    554942437101822882067505427990915978151
    170205694806910699747165388331619297890329020\
    3044796270355772478800051470158947227462501

    Primality testing 1-232^125+232^(2*125)-232^(3*125)+232^(4*125) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 13
    Running N-1 test using base 17
    Running N-1 test using base 19
    Running N+1 test using discriminant 43, base 2+sqrt(43)
    Calling N-1 BLS with factored part 41.45% and helper 0.56% (124.92% proof)
    1-232^125+232^(2*125)-232^(3*125)+232^(4*125) is prime! (0.5028s+0.0007s)

  • leizhou says:

    a(15)=Phi[10,65^100]

    544 digits

    Prime Factors of a(15)-1:
    GGF_n5_100.helper:

    2
    3
    5
    11
    13
    17
    101
    113
    151
    401
    577
    971
    2113
    2741
    18671
    129281
    174061
    8455217
    82825201
    116223791261
    16217230744901
    1349360331672401
    2737143295980601
    44870895496379101
    3244699302048456001
    12003010477294235790586577227997351
    24576399296177435607133227397021121
    26746810111375495742736091979976297270301

    Primality testing 1-65^100+65^(2*100)-65^(3*100)+65^(4*100) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 23
    Running N-1 test using base 29
    Running N-1 test using base 37
    Running N-1 test using base 43
    Running N-1 test using base 47
    Running N+1 test using discriminant 67, base 3+sqrt(67)
    Calling N-1 BLS with factored part 60.38% and helper 0.91% (182.06% proof)
    1-65^100+65^(2*100)-65^(3*100)+65^(4*100) is prime! (0.3322s+0.0005s)

  • leizhou says:

    a(14)=Phi[10,4^80]

    193 digits

    Phi[160,2]
    3* 5^2* 11* 17* 31* 41* 257* 61681* 65537* 414721* 4278255361* 44479210368001

    Phi[128,2]=1+2^64 274177* 67280421310721
    Phi[640,2]=1-2^64+2^128-2^192+2^256
    286721* 446960641* 96645260801* 3442404051886487041* 2715862005931406599419575483412481

    GGF_n5_80.helper
    2
    3
    5
    11
    17
    31
    41
    257
    61681
    65537
    274177
    286721
    414721
    446960641
    4278255361
    96645260801
    44479210368001
    67280421310721
    3442404051886487041
    2715862005931406599419575483412481

    Primality testing 1-4^80+4^(2*80)-4^(3*80)+4^(4*80) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 19
    Running N-1 test using base 23
    Running N-1 test using base 29
    Running N-1 test using base 37
    Running N+1 test using discriminant 47, base 1+sqrt(47)
    Calling N-1 BLS with factored part 100.00% and helper 0.78% (301.25% proof)
    1-4^80+4^(2*80)-4^(3*80)+4^(4*80) is prime! (0.0495s+0.0004s)

  • leizhou says:

    a(13)=Phi[10,373^64]

    494 digits

    From Factorisation
    372 2^2 * 3 * 31
    Phi[2,373]=374 2 * 11 * 17
    Phi[4,373]=139130 2 * 5 * 13913
    Phi[8,373]=19356878642 2 * 54217 * 178513
    Phi[16,373]=374688750722402006882
    2 * 187344375361201003441
    Phi[32,373]=140391659917914310433331237045696371348162
    2 * 371873 * 19959073 * 9457498897039913538990121889
    Phi[64,373]=19709818174507307565719443829033131863966386128853447415328085964703029568678081922
    2 * 193 * 19009 * 14557889 * 78517500128487001623811457 * 2350017925150631169169033327337241144485761

    GGF_n5_64.helper
    2
    3
    5
    11
    17
    31
    193
    373
    13913
    19009
    54217
    178513
    371873
    14557889
    19959073
    38389249
    55615998804579329
    187344375361201003441
    78517500128487001623811457
    9457498897039913538990121889
    2350017925150631169169033327337241144485761

    Primality testing 1-373^64+373^(2*64)-373^(3*64)+373^(4*64) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 23
    Running N-1 test using base 41
    Running N-1 test using base 47
    Running N+1 test using discriminant 61, base 12+sqrt(61)
    Calling N-1 BLS with factored part 53.73% and helper 1.28% (162.51% proof)
    1-373^64+373^(2*64)-373^(3*64)+373^(4*64) is prime! (0.1974s+0.0003s)

  • leizhou says:

    a(12)=Phi[10,5^50]

    622301527786114170714406405378012417052532895248031\
    358691463745029389305888319156836996164700086470525\
    36332466843305155634880065917968750001

    140 digits

    Equals to a(9)

  • leizhou says:

    a(11)=Phi[10,14^40]

    24015172390093493813079336635335038509051217937081\
    73226855310529779167285337174591336512532534092427\
    52395961678355361368665765608412685540200505075790\
    1238577755035196976617032043724801

    184 digits

    Primality testing 1-14^40+14^(2*40)-14^(3*40)+14^(4*40) [N-1/N+1, Brillhart-Lehmer-Selfridge]
    Running N-1 test using base 17
    Running N-1 test using base 19
    Running N-1 test using base 23
    Running N+1 test using discriminant 47, base 1+sqrt(47)
    Calling N-1 BLS with factored part 46.63% and helper 2.13% (142.53% proof)
    1-14^40+14^(2*40)-14^(3*40)+14^(4*40) is prime! (0.0333s+0.0004s)

Leave a Reply