$ setsebool -P allow_execstack on $ nano /etc/modprobe.d/nvidia-installer-disable-nouveau.conf and put in blacklist nouveau options nouveau modeset=0 $ nano /boot/grub/grub.conf and append nomodeset rdblacklist=nouveau to the kernel line $ nano /etc/inittab change id:5:initdefault: to id:3:initdefault: $ shutdown -r now After reboot: $ sh NVIDIA-Linux-x86_64-xxx.xx.xx.run It will install normally. $ nano /etc/inittab change id:3:initdefault: to id:5:initdefault: $ […]
19th Recursive prime in the form of p[k+1]=l(k+1)*(m[k]^2-n[k]^2)+/-1, while p[k]=m[k]+n[k]
Define: p[1] = m[1] + n[1] = 2 + 1 p[2](l=2) = 2*(m[1]^2-n[1]^2)-1 = 2*(4-1)-1 = 5 = 2^3 – 3 p[3](l=2) = 2*(2^6-3^2)-1 = 2^7 – 19 p[4](l=4) = 4*(2^14 – 19^2) -1 = 2^16 – 1445 p[5](l=8) = 8*(2^32 – 1445^2) +1 = 2^35 – 16704199 p[6](l=18) = 2^71*3^2 – (16704199^2*18+1) p[7](l=84) = […]
New prime found: 2^74015*3^42*35^8*5863^16*137^73952*953^2*1223^4*15217 – ((((3643*121875747021497257)^2*19568-1)^2*7624+1)^2*273906-1)
Using Primo, 274^2311 – 83 is proven a prime number. Define this as p[1]=a[1]-b[1], while a[1]=274^2311 and b[1]=83. p[2]=16236*(a[1]^2-b[1]^2)-1 =16236*274^4622 – 111849805 is proven prime using pfgw: pfgw -h”p[1]” -tp “p[2]” Keep going in this way, it is obtained: p[3]=2^9249*3^5*5*7*11^2*13^2*41^2*137^9244 – (3643*121875747021497257) p[4]=2^18502*3^10*5^2*7^2*11^4*13^4*41^4*137^18488*1223 – ((3643*121875747021497257)^2*19568-1) p[5]=2^37007*3^20*35^4*5863^8*137^36976*953*1223^2 – (((3643*121875747021497257)^2*19568-1)^2*7624+1) p[6]=2^74015*3^42*35^8*5863^16*137^73952*953^2*1223^4*15217 – ((((3643*121875747021497257)^2*19568-1)^2*7624+1)^2*273906-1) Certificate will be posted […]
Recursive prime brother by Brillhart – Lehmer – Selfridge algorithm
Define: p[k,i]=ABS[1+2*n[k,i]*p[k-1,1]*p[k-1,2]],n[k,1] is the integer with minimum ABS[n[k,1]] that makes p[k,1] a prime number, and n[k,2] is the integer with second minimum ABS[n[k,2]] that makes p[k,2] a prime number The primality of p[k,i] can be proven using Brillhart – Lehmer – Selfridge algorithm recursively by using p[k-1,1] and p[k-1,2] as helper since n is a […]
Recursive Generalized Fermat Prime found
Define p(0)=1; finding the smallest General Fermat prime in the form p(n+1)[m]=(2*m*p(n))^2+1, m is positive integer: p(1)[1]=(2*p(0))^2+1=5; p(2)[1]=(2*p(1))^2+1=101; p(3)[5]=(2*5*p(2))^2+1=1020101; p(4)[48]=(2*48*p(3))^2+1=((1020101)*96)^2+1; p(5)[1]=(2*p(4))^2+1=((((1020101)*96)^2+1)*2)^2+1; p(6)[30]=(2*30*p(5))^2+1=((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1; p(7)[85]=(2*85*p(6))^2+1=((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1; p(8)[935]=(2*935*p(7))^2+1=((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1; p(9)[528]=(2*528*p(8))^2+1=((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1; p(10)[2505]=(2*2505*p(9))^2+1=((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1; p(11)[840]=(2*840*p(10))^2+1=((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1; p(12)[1190]=(2*1190*p(11))^2+1=((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1; p(13)[29382]=(2*29382*p(12))^2+1=((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1; p(14)[25176]=(2*25176*p(13))^2+1=((((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1; p(15)[12685]=(2*12685*p(14))^2+1=((((((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1)*25370)^2+1; p(16)[67852]=(2*67852*p(15))^2+1=((((((((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1)*25370)^2+1)*135704)^2+1; p(17)[299549]=(2*299549*p(16))^2+1=((((((((((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1)*25370)^2+1)*135704)^2+1)*599098)^2+1; p(18)[62406]=(2*62406*p(17))^2+1=((((((((((((((((((((((((((((97929696^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1)*25370)^2+1)*135704)^2+1)*599098)^2+1)*124812)^2+1; p(4) has database ID 96548 in The List of Largest Known Primes Home Page. The direct link is HERE. These primes […]
Recursive prime p(k+1)=m*((n*p(k))^3+1)+1 base 12^9*5^5^5+7
Define p(0)=12^9*5^5^5+7; p(1)[m=466;n=78]=466*((78*(12^9*5^3125+7))^3+1)+1; p(2)[m=6470;n=884]=6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1; p(3)[m=278822;n=33410]=278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1; p(4)[m=145950;n=46953]=145950*((46953*( 278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1))^3+1)+1; p(4) has database ID 96540 in The List of Largest Known Primes Home Page. The direct link is HERE. The kernel 12^9*5^5^5+1 is proven by Primo. The certificate is in the first reply of this post. The recursive primes are proven using OpenPFGW, by the command pfgw -t […]
Some facts
1) For any number N=Sigma(p_i), i=1..k, p_i are prime factors of N with any prime number cp, cp is not factor of N, there is: Mod(cp^LCM(p_i-1, i=1..k), N)=1. for some case, Mod(cp^(LCM(p_i-1, i=1..k)/2), N)= +/-1 Special: when N is prime, Mod(cp^(N-1), N)=1 For example: In[3]:= FactorInteger[66855224152] Out[3]= {{2, 3}, {19, 1}, {1549, 1}, {283949, 1}} […]
Check RAM slot in Linux using dmidecode
# dmidecode can see the server chasing information such as server tag, server model, product model and more… # dmidecode -t -17 | grep Size to can view the RAM size that been installed and the slot not yet installed RAM. To check the maximum RAM capacity can installed.. # dmidecode -t 16 # dmidecode […]
第九章[持而盈之]
原文: 持而盈之,不如其已。揣而锐之,不可长保。金玉满堂,莫之能守。富贵而骄,自遗其咎。功遂身退,天下之道。 译文: 守着已经达成的成就,这个成就也会逐渐褪色,越来越不如其当初的辉煌。聚集起来的锐气气势,不可能一直坚持下去。有一屋子的金玉,你总不可能就看着它们,否则那些金玉还有什么用?有了钱了,就开始自满,恰恰是把富贵的害处都留给了自己。完成了一件事情,就应该离开这件事情,这才是天下万物的法则。 评论: 这一章也是道德经中遭到广泛曲解的一章。许多人将这一章理解为老子主张非完美主义。这实际上是南辕北辙的理解。这一章的真正含义在于“不断前进”,表现了老子思想非常进步的一面。这章承上章“上善若水。水善利万物而不争,居众人之所恶。”的思想,水能够帮助诸多的事物却不留下来和得到它帮助的事物竞争功绩,而是流走到大家都不喜欢的地方去。从反面印证,为什么“不留下来争夺享受功劳”才是“上善”。这里给了四个留下来争夺享受功劳的例子。“持而盈之,不如其已。”如果你做了一件值得称道的事,开始的时候大家可能会很钦佩你仰慕你赞美你。但日子久了,事情的影响逐渐消退,你得到的赞美也会逐渐褪色,不如当初了。这个不是别人改变看法了,而是事物发展的本质。如果你积聚起来某种气势,当时可能震慑当场。但是如果你想把这种震慑保持下去,一方面你自己做不到。另一方面别人习惯了,也就不鸟你了。如果你拥有一屋子金玉,你就想守着它们,不让它们流失,这些金玉不但对你失去了本身的价值,反而要消耗你的金钱精力去仓储它们。这样又怎么守得住呢?如果你富了贵了,然后就自满,不再前进了,就想着守住这些富贵,那么你得到的不是富贵,而仅仅是为保持富贵而付出的精力和代价这些副作用。可见,想一劳永逸坐在过去的成就上吃老本是只会走下坡路的。这个是不符合万物遵循的基本法则的。万物都在不停歇的运动。你如果停歇,正如逆水行舟,不进则退。天下万物的法则,一直都是完成了一件事,就离开这件事,去为下一件事努力。这一章同时承继第二章的结语:“万物作而弗始,生而弗有,为而弗恃,功成而弗居。夫唯弗居,是以不去。”世上万物,不管引起什么变化,都不自称始祖;不管创生了什么东西,都不据为己有;不管做了什么事情,都不居功,不躺在功劳簿上停止前进。正是因为不居功,所以才不会被历史的车轮淘汰。 总结: 这一章以反证法具体论证第二章从万物的规律推论出的为人处事的基本准则。利用守成必然导致每况愈下的现实例子,说明不居功,不断前进的必要性。同时进一步清晰化第七章“无私成其私”第八章的“不争”思想,不争,不争的过去。不争的真实含义不是谦谦君子损己为人,而是不躺在过去的功劳簿上。人只有不去和别人争过去的功劳,而是顺遂自然的法则,不断前进,不断探索,不断开辟新领域,才能保持自己的领先,“以其无私,故能成其私。”不去争过去的功劳,就可以避免维护那些过去带来的虚耗和副作用,“夫唯不争,故无尤。”老子思想进步,前瞻的特性从这一章跃然纸上。
The future of China-Japan relationship
China and Japan went into a debate due to a capture of a fishing boat captain in the Diaoyu Islands area which is in between China mainland, Ryukyu Islands, Taiwan Island, and Pacific Ocean. The dabate has extended to governmental, public opinion, and international. What will this thing go? The recent relevant event is that […]