Author: leizhou


Website:

http://bitc.bme.emory.edu/Members/lzhou.html

About this author:


8.9 Earthquake struck Japan triggering a Tsunami

Mar 11, 2011, 13:46, A ferocious tsunami spawned by one of the largest earthquakes ever recorded slammed Japan’s eastern coast today, killing at least 60 people as it swept away boats, cars and homes while widespread fires burned out of control. Tsunami warnings blanketed the entire Pacific, as far away as South America, Canada, Alaska […]

upgrade RHEL5 to RHEL6

By adding in “upgradeany” after the RHEL6 installation CD/DVD’s GRUB interface, it allowed to do the upgrading. (Press TAB, and add on upgradeany after initre=initrd.img) However, it failed on package kde-filesystem. To resolve this, press Ctrl-Alt-F2, it will bring you into a shell of the installation environment. From here, you can try $ cd /mnt/source/Packages […]

Install NVIDIA driver to RHEL6

$ setsebool -P allow_execstack on $ nano /etc/modprobe.d/nvidia-installer-disable-nouveau.conf and put in blacklist nouveau options nouveau modeset=0 $ nano /boot/grub/grub.conf and append nomodeset rdblacklist=nouveau to the kernel line $ nano /etc/inittab change id:5:initdefault: to id:3:initdefault: $ shutdown -r now After reboot: $ sh NVIDIA-Linux-x86_64-xxx.xx.xx.run It will install normally. $ nano /etc/inittab change id:3:initdefault: to id:5:initdefault: $ […]

19th Recursive prime in the form of p[k+1]=l(k+1)*(m[k]^2-n[k]^2)+/-1, while p[k]=m[k]+n[k]

Define: p[1] = m[1] + n[1] = 2 + 1 p[2](l=2) = 2*(m[1]^2-n[1]^2)-1 = 2*(4-1)-1 = 5 = 2^3 – 3 p[3](l=2) = 2*(2^6-3^2)-1 = 2^7 – 19 p[4](l=4) = 4*(2^14 – 19^2) -1 = 2^16 – 1445 p[5](l=8) = 8*(2^32 – 1445^2) +1 = 2^35 – 16704199 p[6](l=18) = 2^71*3^2 – (16704199^2*18+1) p[7](l=84) = […]

New prime found: 2^74015*3^42*35^8*5863^16*137^73952*953^2*1223^4*15217 – ((((3643*121875747021497257)^2*19568-1)^2*7624+1)^2*273906-1)

Using Primo, 274^2311 – 83 is proven a prime number. Define this as p[1]=a[1]-b[1], while a[1]=274^2311 and b[1]=83. p[2]=16236*(a[1]^2-b[1]^2)-1 =16236*274^4622 – 111849805 is proven prime using pfgw: pfgw -h”p[1]” -tp “p[2]” Keep going in this way, it is obtained: p[3]=2^9249*3^5*5*7*11^2*13^2*41^2*137^9244 – (3643*121875747021497257) p[4]=2^18502*3^10*5^2*7^2*11^4*13^4*41^4*137^18488*1223 – ((3643*121875747021497257)^2*19568-1) p[5]=2^37007*3^20*35^4*5863^8*137^36976*953*1223^2 – (((3643*121875747021497257)^2*19568-1)^2*7624+1) p[6]=2^74015*3^42*35^8*5863^16*137^73952*953^2*1223^4*15217 – ((((3643*121875747021497257)^2*19568-1)^2*7624+1)^2*273906-1) Certificate will be posted […]

Recursive prime brother by Brillhart – Lehmer – Selfridge algorithm

Define: p[k,i]=ABS[1+2*n[k,i]*p[k-1,1]*p[k-1,2]],n[k,1] is the integer with minimum ABS[n[k,1]] that makes p[k,1] a prime number, and n[k,2] is the integer with second minimum ABS[n[k,2]] that makes p[k,2] a prime number The primality of p[k,i] can be proven using Brillhart – Lehmer – Selfridge algorithm recursively by using p[k-1,1] and p[k-1,2] as helper since n is a […]

Recursive Generalized Fermat Prime found

Define p(0)=1; finding the smallest General Fermat prime in the form p(n+1)[m]=(2*m*p(n))^2+1, m is positive integer: p(1)[1]=(2*p(0))^2+1=5; p(2)[1]=(2*p(1))^2+1=101; p(3)[5]=(2*5*p(2))^2+1=1020101; p(4)[48]=(2*48*p(3))^2+1=((1020101)*96)^2+1; p(5)[1]=(2*p(4))^2+1=((((1020101)*96)^2+1)*2)^2+1; p(6)[30]=(2*30*p(5))^2+1=((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1; p(7)[85]=(2*85*p(6))^2+1=((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1; p(8)[935]=(2*935*p(7))^2+1=((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1; p(9)[528]=(2*528*p(8))^2+1=((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1; p(10)[2505]=(2*2505*p(9))^2+1=((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1; p(11)[840]=(2*840*p(10))^2+1=((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1; p(12)[1190]=(2*1190*p(11))^2+1=((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1; p(13)[29382]=(2*29382*p(12))^2+1=((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1; p(14)[25176]=(2*25176*p(13))^2+1=((((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1; p(15)[12685]=(2*12685*p(14))^2+1=((((((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1)*25370)^2+1; p(16)[67852]=(2*67852*p(15))^2+1=((((((((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1)*25370)^2+1)*135704)^2+1; p(17)[299549]=(2*299549*p(16))^2+1=((((((((((((((((((((((((((((1020101)*96)^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1)*25370)^2+1)*135704)^2+1)*599098)^2+1; p(18)[62406]=(2*62406*p(17))^2+1=((((((((((((((((((((((((((((97929696^2+1)*2)^2+1)*60)^2+1)*170)^2+1)*1870)^2+1)*1056)^2+1)*5010)^2+1)*1680)^2+1)*2380)^2+1)*58764)^2+1)*50352)^2+1)*25370)^2+1)*135704)^2+1)*599098)^2+1)*124812)^2+1; p(4) has database ID 96548 in The List of Largest Known Primes Home Page. The direct link is HERE. These primes […]

Recursive prime p(k+1)=m*((n*p(k))^3+1)+1 base 12^9*5^5^5+7

Define p(0)=12^9*5^5^5+7; p(1)[m=466;n=78]=466*((78*(12^9*5^3125+7))^3+1)+1; p(2)[m=6470;n=884]=6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1; p(3)[m=278822;n=33410]=278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1; p(4)[m=145950;n=46953]=145950*((46953*( 278822*((33410*(6470*((884*(466*((78*(12^9*5^3125+7))^3+1)+1))^3+1)+1))^3+1)+1))^3+1)+1; p(4) has database ID 96540 in The List of Largest Known Primes Home Page. The direct link is HERE. The kernel 12^9*5^5^5+1 is proven by Primo. The certificate is in the first reply of this post. The recursive primes are proven using OpenPFGW, by the command pfgw -t […]

Some facts

1) For any number N=Sigma(p_i), i=1..k, p_i are prime factors of N with any prime number cp, cp is not factor of N, there is: Mod(cp^LCM(p_i-1, i=1..k), N)=1. for some case, Mod(cp^(LCM(p_i-1, i=1..k)/2), N)= +/-1 Special: when N is prime, Mod(cp^(N-1), N)=1 For example: In[3]:= FactorInteger[66855224152] Out[3]= {{2, 3}, {19, 1}, {1549, 1}, {283949, 1}} […]

Check RAM slot in Linux using dmidecode

# dmidecode can see the server chasing information such as server tag, server model, product model and more… # dmidecode -t -17 | grep Size to can view the RAM size that been installed and the slot not yet installed RAM. To check the maximum RAM capacity can installed.. # dmidecode -t 16 # dmidecode […]